• 제목/요약/키워드: Hollow column

검색결과 210건 처리시간 0.025초

Behaviour of cold-formed steel concrete infilled RHS connections and frames

  • Angeline Prabhavathy, R.;Samuel Knight, G.M.
    • Steel and Composite Structures
    • /
    • 제6권1호
    • /
    • pp.71-85
    • /
    • 2006
  • This paper presents the results of a series of tests carried out on cold-formed steel rectangular hollow and concrete infilled beam to column connections and frames. A stub column was chosen such that overall buckling does not influence the connection behaviour. The beam chosen was a short-span cantilever with a concentrated load applied at the free end. The beam was connected to the columns along the strong and weak axes of columns and these connections were tested to failure. Twelve experiments were conducted on cold-formed steel direct welded tubular beam to column connections and twelve experiments on connections with concrete infilled column subjected to monotonic loading. In all the experiments conducted, the stiffness of the connection, the ductility characteristics and the moment rotation behaviour were studied. The dominant mode of failure in hollow section connections was chord face yielding and not weld failure. Provision of concrete infill increases the stiffness and the ultimate moment carrying capacity substantially, irrespective of the axis of loading of the column. Weld failure and bearing failure due to transverse compression occurred in connections with concrete infilled columns. Six single-bay two storied frames both with and without concrete infill, and columns loaded along the major and minor axes were tested to failure. Concentrated load was applied at the midspan of first floor beam. The change in behaviour of the frame due to provision of infill in the column and in the entire frame was compared with hollow frames. Failure of the weld at the junction of the beam occurred for frames with infilled columns. Design expressions are suggested for the yielding of the column face in hollow sections and bearing failure in infilled columns which closely predicted the experimental failure loads.

물량저감 철근상세를 갖는 중공 철근콘크리트 교각단면에 관한 매개변수 연구 (Parametric Study on Hollow Reinforced Concrete Bridge Column Sections with Reinforcement Details for Material Quantity Reduction)

  • 김태훈;김호영;이재훈;신현목
    • 한국지진공학회논문집
    • /
    • 제17권4호
    • /
    • pp.159-169
    • /
    • 2013
  • The purpose of this study is to investigate the inelastic behavior of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction and to provide the details and reference data. Among the numerous parameters, this study concentrates on the shape of the section, the reinforcement details, the diameter of the transverse reinforcement and loading types. Eighteen column section specimens were tested under quasi-static monotonic loading. In this study, the computer program RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used. A modified lateral confining effect model was adopted for the hollow bridge column sections. This study documents the testing of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction and presents conclusions based on the experimental and analytical findings.

Concrete contribution to initial shear strength of RC hollow bridge columns

  • Kim, Ick-Hyun;Sun, Chang-Ho;Shin, Myoungsu
    • Structural Engineering and Mechanics
    • /
    • 제41권1호
    • /
    • pp.43-65
    • /
    • 2012
  • The primary objective of this study was to identify concrete contribution to the initial shear strength of reinforced concrete (RC) hollow columns under lateral loading. Seven large-scale RC rectangular hollow column specimens were tested under monotonic or cyclic lateral loads. The most important design parameter was column length-to-depth aspect ratio ranging between 1.5 and 3.0, and the other test variables included web area ratio, hollow section ratio, and loading history. The tests showed that the initial shear strength reduced in a linear pattern as the column aspect ratio increased, and one specimen tested under cyclic loading achieved approximately 83% of the shear strength of the companion specimen under monotonic loading. Also, several pioneering shear models proposed around the world, all of which were mainly based on tests for columns with solid sections, were reviewed and compared with the test results of this study, for their possible applications to columns with hollow sections. After all, an empirical equation was proposed for concrete contribution to the initial shear strength of RC hollow columns based on fundamental mechanics and the test results.

강합성 중공 기둥의 내진 성능 (Seismic Performance of a Hollow Composite Column)

  • 한택희;김정훈;임남형;강영종
    • 한국강구조학회 논문집
    • /
    • 제20권2호
    • /
    • pp.215-226
    • /
    • 2008
  • 강관이 삽입된 강합성 중공 기둥의 내진 성능 평가 실험을 수행하였다. 준정적 실험을 통하여 강합성 중공 기둥과 일반 중실 RC기둥의 내진 성능을 비교 평가 하였다. 각각의 기둥 시험체에 대해 최대 하중과 변위의 관계를 측정하였으며, 이를 바탕으로 연성도, 소산에너지, 등가 감쇠비, 손상 지수가 계산되었다. 실험 결과 강합성 중공 기둥은 중실 RC 기둥에 비해 약 2배의 모멘트에 저항을 하였으며, 에너지의 흡수와 소산에서도 2배 정도의 성능을 보여주어, 강합성 중공 기둥의 우수한 성능을 확인하였다.

물량저감 철근상세를 갖는 중공 철근콘크리트 교각단면의 개발 (Development of Hollow Reinforced Concrete Bridge Column Sections with Reinforcement Details for Material Quantity Reduction)

  • 김태훈;이재훈;신현목
    • 한국지진공학회논문집
    • /
    • 제17권3호
    • /
    • pp.107-115
    • /
    • 2013
  • The purpose of this study was to investigate the performance of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction. The proposed reinforcement details has have economic feasibility and rationality and makes construction periods shorter. A model of column sections with reinforcement details for material quantity reduction was tested under quasistatic monotonic loading. As a result, the proposed reinforcement details for material quantity reduction was were equal to existing reinforcement details in terms of the required performance. In the a subsequent paper, the an experimental and analytical study will be performed for the performance assessment of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction will be performed.

Seismic shear behavior of rectangular hollow bridge columns

  • Mo, Y.L.;Jeng, Chyuan-Hwan;Perng, S.F.
    • Structural Engineering and Mechanics
    • /
    • 제12권4호
    • /
    • pp.429-448
    • /
    • 2001
  • An analytical model incorporating bending and shear behavior is presented to predict the lateral loading characteristic for rectangular hollow columns. The moment-curvature relationship for the rectangular hollow sections of a column is firstly determined. Then the nonlinear lateral load-displacement relationship for the hollow column can be obtained accordingly. In this model, thirteen constitutive laws for confined concrete and five approaches to estimate the shear capacity are used. A series of tests on 12 model hollow columns aimed at the seismic shear behavior are reported, and the test data are compared to the analytical results. It is found that the analytical model reflects the experimental results rather closely.

Seismic performances of centrifugally-formed hollow-core precast columns with multi-interlocking spirals

  • Hwang, Jin-Ha;Lee, Deuck Hang;Oh, Jae Yuel;Choi, Seung-Ho;Kim, Kang Su;Seo, Soo-Yeon
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1259-1274
    • /
    • 2016
  • A precast composite column system has been developed in this study by utilizing multi interlocking spiral steel into a centrifugally-formed hollow-core precast (CHPC) column. The proposed hybrid column system can have enhanced performances in the composite interaction behavior between the hollowed precast column and cast-in-place (CIP) core-filled concrete, the lap splice performance of bundled bars, and the confining effect of concrete. In the experimental program, reversed cyclic loading tests were conducted on a conventional reinforced concrete (RC) column fabricated monolithically, two CHPC columns filled with CIP concrete, and two steel-reinforced concrete (SRC) columns. It was confirmed that the interlocking spirals was very effective to enhance the structural performance of the CHPC column, and all the hollow-core precast column specimens tested in this study showed good seismic performances comparable to the monolithic control specimen.

Membrane contactor and Carbon Dioxide Separation

  • 이규호
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2002년도 제10회 하계 Workshop
    • /
    • pp.59-101
    • /
    • 2002
  • PVDF is good material for a hollow fiber membrane with high porosity and excellent hydrophobicity. Asymmetric PVDF hollow fiber membranes were prepared by the Loeb-Sourirajan phase inversion method. Asymmetric PVDF hollow fiber membranes could be controlled in pore size and porosity using various additives(LiCl, ZnCl$_2$) and internal coagulants (water, EtOH/water, and DMAc/water mixture). $CO_2$removal efficiency of asymmetric PVDF hollow fiber membranes was 1.2 times high than that of commercialized PP hollow fiber membranes at MEA 5wt% solution. $CO_2$flux of asymmetric PVDF hollow fiber membranes was 2.5 times higher than that of commercialized PP hollow fiber membranes. $CO_2$removal efficiency and absorption rate of asymmetric PVDF hollow fiber membranes were 30 times higher than those of packed column at absorbent $H_2O$. $CO_2$flux of asymmetric PVDF hollow fiber membranes at MEA 5wt% solution was 48 times higher than that of pure water. In the case of MEA 5wt% solution used as an absorbent, the $CO_2$absorption rate and removal efficiency of PVDF hollow fiber membrane were 2.3 times higher than that of a packed column.

  • PDF

내부 구속 중공 CFT 기둥의 비선형 해석 (Nonlinear Analysis of Internally Confined Hollow CFT Columns)

  • 한택희;원덕희;강영종
    • 한국강구조학회 논문집
    • /
    • 제23권4호
    • /
    • pp.439-454
    • /
    • 2011
  • 내부구속 중공 콘크리트 충전 강관(ICH CFT: Internally Confined Hollow Concrete Filled Tube) 기둥의 비선형 해석모델을 제안하고 기존 연구자의 실험 결과를 이용하여 검증하였다. 제안된 모델은 콘크리트의 구속효과와 재료비선형성을 고려하였다. 검증결과, 제안된 해석 모델은 ICH CFT 기둥의 거동을 예측하는데 합리적이고 신뢰할 수 있는 결과를 보여주었다. 제안된 모델을 이용하여 매개변수 연구를 수행하였으며, 기둥의 거동에 영향을 미치는 주요인자로서 콘크리트의 강도, 중공비, 내부강관의 두께를 매개변수로 선택하였다. 해석결과, 콘크리트 강도와 내부강관의 두께는 기둥의 축강도와 모멘트 저항능력에 큰 영향을 주었으나, 중공비의 변화는 축강도에만 영향을 미치는 결과를 보여주었다.

원형 강관 삽입 중공 RC 기둥의 내부구속 효과 연구 (Confining Effect of an Internal Steel Tube in a Circular Hollow RC Column)

  • 한택희;김홍중;김영종;강영종
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.565-575
    • /
    • 2006
  • 구속된 콘크리트는 구속되지 않은 콘크리트에 비해 상당히 큰 강도를 갖는다. 따라서 콘크리트의 구속응력을 증가시키는 것은 강도의 증가를 유도할 수 있다. 하지만 중공교각의 경우, 심부구속력의 부재로 인하여 중공교각의 안쪽면에서 취성파괴가 발생하며, 이는 기둥의 강도 저하 및 연성의 저하를 초래한다. 이러한 문제를 극복하기 위하여, 강관 삽입 중공 RC(Reinforced Concrete) 기둥이 개발되었으며, 본 연구에서는 실험을 통하여 삽입 강관에 의한 내부 구속력의 효과를 검증하였다. 총 36개의 시험체를 제작하여 실험을 수행하였으며, 실험 결과를 통하여 삽입 강관의 구속력과 이로 인한 콘크리트의 강도 증가를 확인하였다.