• 제목/요약/키워드: Hollow Section

검색결과 308건 처리시간 0.026초

고강도 원형강관의 길이방향 거셋플레이트 접합부 실험 및 해석 (Test and Analysis on the Longitudinal Gusset Plate Connection to Circular Hollow Section (CHS) of High Strength)

  • 이수헌;신경재;이희두;김우범
    • 한국강구조학회 논문집
    • /
    • 제24권1호
    • /
    • pp.35-46
    • /
    • 2012
  • 초고층 빌딩의 수요가 증가함에 따라 고강도 강관의 수요 또한 함께 증가하고 있다. 이에 고강도 고인성의 600MPa급 강관의 접합부 내력 연구가 필요하게 되었다. 또한 현행국내기준에는 강관의 경우 항복응력 360MPa 이하에 설계식을 적용하도록 되어 있다. 즉, 고강도강재를 이용한 600MPa 강관의 경우 현행기준을 적용할 수 없으므로 600MPa급 고강도 강관의 거셋플레이트 접합부의 내력실험 및 유한요소해석을 통하여 기존 설계식의 적용가능성을 조사하고 접합부의 거동을 연구하고자 한다. 특히, 본 논문에서는 원형강관에 길이 방향으로 거셋플레이트가 접합된 접합부에 횡력(수평력)이 작용하였을 때의 거동을 다루었다. 유한요소해석 및 실험결과를 설계식과 비교해보면, 고강도 강재에서는 기존의 설계식들이 56~79%로 과소평가되었다.

형상비 4.0이고 축방향철근비 2.36 ~ 4.71%인 팔각형 중공단면 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구 (Experimental Study on the Failure Behavior of RC Octagonal Hollow Section Columns with Aspect Ratio of 4.0 and Longitudinal Steel Ratio of 2.36 ~ 4.71%)

  • 고성현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권6호
    • /
    • pp.102-111
    • /
    • 2022
  • 본 논문의 목적은 팔각형 중공단면 철근콘크리트 교각의 내진성능을 평가하고 축방향철근비가 파괴거동에 미치는 영향을 분석함에 있다. 축소모형 팔각형 중공단면 기둥 실험체 4개를 제작하여 일정한 축력 하에서 반복 횡하중을 가력하는 실험을 수행하였다. 모든 실험체의 횡방향 나선철근 체적비는 0.206%로 일정하고 축방향철근비는 2.36 ~ 4.71%이다. 파괴거동과 내진성능을 분석하였고 겹침이음 실험체를 제외한 3개의 실험체는 최종단계에서 휨-전단 파괴거동을 보였다. 겹침이음 실험체를 제외한 실험결과에서 변위연성도와 누적 에너지소산 능력이 축방향철근비에 반비례하여 감소하는 경향을 나타내었다.

평금형을 통한 중공형재 압출의 유한요소 해석 (Finite Element Analysis for Extrusion of Hollow Shaped Section Through Square Die)

  • 이춘만;이승훈;조종래
    • 소성∙가공
    • /
    • 제7권4호
    • /
    • pp.375-381
    • /
    • 1998
  • This paper presents development of finite element simulation program and analysis of hot extrusion through square dies with a mandrel. The design of extrusion dies is still an art rather than science. Die design for a new extrusion process is developed from through in-plant trials. In the present paper, a three-dimensional steady-state finite element simulation program is developed. Steady-state assumption is used for both the analyses of deformation and temperature. The developed program is effectively used to simulate hollow extrusion of several sections. Distributions of temperature effective strain rate, mean strain rate and mean stress are studied for an effective design of extrusion dies.

  • PDF

Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns

  • Han, Lin-Hai;Yao, Guo-Huang;Zhao, Xiao-Ling
    • Steel and Composite Structures
    • /
    • 제4권3호
    • /
    • pp.169-188
    • /
    • 2004
  • A mechanics model is developed in this paper for concrete-filled steel CHS (circular hollow section) beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and the filled concrete. The predicted load versus deformation relationship is in good agreement with test results. The theoretical model was used to investigate the influence of important parameters that determine the ultimate strength of concrete-filled steel CHS beam-columns. The parametric and experimental studies provide information for the development of formulas for the calculation of the ultimate strength of the composite beam-columns. Comparisons are made with predicted beam-columns strengths using the existing codes, such as LRFD-AISC-1999, AIJ-1997, BS5400-1979 and EC4-1994.

Flexural behaviour of square UHPC-filled hollow steel section beams

  • Guler, Soner;Copur, Alperen;Aydogan, Metin
    • Structural Engineering and Mechanics
    • /
    • 제43권2호
    • /
    • pp.225-237
    • /
    • 2012
  • This paper presents an experimental investigation of the flexural behavior of square hollow steel section (HSS) beams subjected to pure bending. Totally six unfilled and nine ultra high performance concrete (UHPC)-filled HSS beams were tested under four-point bending until failure. The effects of the steel tube thickness, the yield strength of the steel tube and the strength of concrete on moment capacity, curvature, and ductility of UHPC-filled HSS beams were examined. The performance indices named relative ductility index (RDI) and strength increasing factor (SIF) were investigated with regard to different height-to-thickness ratio of the specimens. The flexural strengths obtained from the tests were compared with the values predicted by Eurocode 4, AISC-LRFD and CIDECT design codes. The results showed that the increase in the moment capacity and the corresponding curvature is much greater for thinner HSS beams than thicker ones. Eurocode 4 and AISC-LRFD predict the ultimate moment capacity of the all UHPC-filled HSS beams conservatively.

Buckling analysis of thin-walled circular hollow section members with and without longitudinal stiffeners

  • Cuong, Bui H.
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.231-242
    • /
    • 2022
  • Numerical solutions for the linear buckling behavior of thin-walled circular hollow section members (CHS) with and without longitudinal stiffeners are presented using the semi-analytical finite strip method (SAFSM) which is developed based on Marguerre's shallow shell theory and Kirchhoff's assumption. The formulation of 3-nodal line finite strip is presented. The CHS members subjected to uniform axial compression, uniform bending, and combination of compression and bending. The buckling behavior of CHS is investigated through buckling curves which relate buckling stresses to lengths of the member. Effects of longitudinal stiffeners are studied with the change of its dimensions, position, and number.

Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections

  • Dai, X.;Lam, D.
    • Steel and Composite Structures
    • /
    • 제10권6호
    • /
    • pp.517-539
    • /
    • 2010
  • This paper presents the axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel and carbon steel hollow sections. The finite element method developed via ABAQUS/Standard solver was used to carry out the simulations. The accuracy of the FE modelling and the proposed confined concrete stress-strain model were verified against experimental results. A parametric study on stub concrete-filled columns with various elliptical hollow sections made with stainless steel and carbon steel was conducted. The comparisons and analyses presented in this paper outline the effect of hollow sectional configurations to the axial compressive behaviour of elliptical concrete-filled steel tubular columns, especially the merits of using stainless steel hollow sections is highlighted.

팁 선단에 중공이 있는 전극을 이용한 스패터 저감 스폿 용접에 관한 연구 (A Study of Spot Welding Process to Reduce Spatter with the Hollow Tip)

  • 전정상;이세헌
    • Journal of Welding and Joining
    • /
    • 제27권4호
    • /
    • pp.44-48
    • /
    • 2009
  • In automotive company, a lot of researchers have investigated for the spatterless welding process during last two decades. A spatter influences on the product quality such as strength and surface states. In this paper, a hollow tip is proposed for spatterless process. An optimal size of electrode hole is obtained from a weldability evaluation of each hole diameter. Through the cross section analysis, a phenomenon that molten metal moves in the hole which located between two workpiece is observed, and this makes spatterless welding process even though current is higher. Finally, widely acceptable weld area in lobe curve is obtained by using hollow tip as compare with conventional no hollow tip. In this paper, spatterless resistance spot welding with improvement weldability and productivity is proposed by using hollow tip.

Temperature distribution behaviors of GFRP honeycomb hollow section sandwich panels

  • Kong, B.;Cai, C.S.;Pan, F.
    • Structural Engineering and Mechanics
    • /
    • 제47권5호
    • /
    • pp.623-641
    • /
    • 2013
  • The fiber-reinforced polymer (FRP) composite panel, with the benefits of light weight, high strength, good corrosion resistance, and long-term durability, has been considered as one of the prosperous alternatives for structural retrofits and replacements. Although with these advantages, a further application of FRPs in bridge engineering may be restricted, and that is partly due to some unsatisfied thermal performance observed in recent studies. In this regard, Kansas Department of Transportation (DOT) conducted a field monitoring program on a bridge with glass FRP (GFRP) honeycomb hollow section sandwich panels. The temperatures of the panel surfaces and ambient air were measured from December 2002 to July 2004. In this paper, the temperature distributing behaviors of the panels are firstly demonstrated and discussed based on the field measurements. Then, a numerical modeling procedure of temperature fields is developed and verified. This model is capable of predicting the temperature distributions with the local environmental conditions and material's thermal properties. Finally, a parametric study is employed to examine the sensitivities of several temperature influencing factors, including the hollow section configurations, environmental conditions, and material properties.

중심압축하중을 받는 스테인리스 강관 기둥의 좌굴내력에 관한 연구 (A Study on the Buckling Strength of Centrally Compressed Stainless Steel Tubular Columns)

  • 장호주;양영성
    • 한국강구조학회 논문집
    • /
    • 제17권2호통권75호
    • /
    • pp.207-216
    • /
    • 2005
  • 본 논문은 스테인리스 각형강관 및 원형강관에 대한 좌굴내력에 관한 연구로서 건축구조용 강재로서의 적용성 검토를 위해, 세장비를 주요 변수로 한 소재의 인장강도실험과 stub-column의 압축강도실험, 기둥의 중심압축실험을 실시하여 강재의 기계적 성질과 기둥의 강도 및 거동을 파악한다. 또한 이론해석과 각국 기준식(AIK-LSD, AISC-LRFD, AIJ-LSD, SIJ-ASD) 및 복수강도곡선의 적용을 통한 이론값과 실험값을 비교함으로서 건축구조용 강재로서 적용성 검토와 구조설계기준 확립을 위한 기초 자료를 구하는데 목적이 있다.