• Title/Summary/Keyword: Hollow Fiber Reactor

Search Result 35, Processing Time 0.021 seconds

A Submerged Membrane Bioreactor with Anoxic-oxic Recycle for the Treatment of High-strength Nitrogen Wastewater

  • Shim, Jin-Kie;Yoo, Ik-Keun;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • Using the hollow fiber membrane module in a lab-scale membrane bioreactor, the anoxic- oxic (AO) process for nitrogen removal was operated for about one year. For the influent wastewater containing 1,200-1,400 mg $1^{-1}$ of CODcr and 200-310 mg $1^{-1}$ of nitrogen, this process achieved a high quality effluent of less than 30 mgCOD $liter^{-1}$ and 50 mgN $liter^{-1}$. The removal rate of organics was above 98% at a loading rate larger than 2.5 kgCOD $m^{-3}$$d^{-1}$. When the internal recycle from the oxic to the anoxic reactor changed room 2n to 600% rout the influent flow rate, the nitrogen removal rate increased from about 70 to 90% at a loading rate of 0.4 kgT-N m-s d-1. The initial increase of transmembrane pressure (TMP) was observed after a 4-month operation while maintaining the flux and MLSS concentration at 7-9 1 $m^2$ $h^{-1}$ and 6,000-14,000 mg $1^{-1}$, respectively. The TMP could be maintained below 15 cmHg for an 8-month operation. The chemical cleaning with an acid followed by an immersion in an alkali solution gave better cleaning result with the membrane operated for 10 month rather than that only by an alkali immersion.

  • PDF

Development of PTFE Membrane Bio-reactor (MBR) for Integrating Wastewater Reclamation and Rainwater Harvesting (PTFE막을 이용한 빗물 중수 통합형 MBR 시스템 개발 및 성능 평가)

  • Lee, Taeseop;Kim, Youngjin;Ham, Sangwoo;Hong, Seungkwan;Park, Byungjoo;Shin, Yongil;Jung, Insik
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.269-276
    • /
    • 2012
  • The surface characteristics and performance of PTFE (polytetrafluoroethylene) hollow fiber membranes have been systematically investigated at lab- and pilot-scale to assess their application to membrane-bioreactor, particularly for integrating wastewater reclamation and rainwater harvesting. The PTFE membrane expressed some surface features, such as hydrophobicity, which might enhance membrane fouling. However, lab-scale performance and cleaning experiments under various conditions demonstrated that the PTFE membrane could produce the desirable water flux with good cleaning efficiency, implying easy operation and maintenance due to superior chemical resistance of PTFE membranes. Most of effluent water qualities were met with Korean standard for discharge and reuse, except color. Color level was further reduced by blending with rainwater at 75:25 ratio. Based on the lab-scale experimental results, the pilot plant was designed and operated. Pilot operation clearly showed sTable performance with satisfactory water quality, suggesting that PTFE membrane could be applied for decentralized MBR integrated with rainwater use.

Enzymatic Hydrolysis of Yellowfin Sole Skin Gelatin in a Continuous Hollow Fiber Membrane Reactor (연속식 중공사막 반응기를 이용한 각시가자미피 젤라틴의 가수분해)

  • KIM Se-Kwon;BYUN Hee-Guk;KANG Tae-Jung;SONG Dae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.120-132
    • /
    • 1993
  • A continuous hollow fiber membrane reactor(CHFMR) was developed and optimized for the production of yellowfin sole(Limanda aspera) skin gelatin hydrolysates using trypsin. The results were summerized as follows: The $K_m$ value of the CHFMR was 2.4 times higher than that of the batch reactor, indicating reduced enzyme affinity for the substrate. The $K_2$ value of the CHFMR was 8.5 times lower than that of the batch process, showing a significant reduction in trypsin activity in the CHFMR. The optimum operating conditions for the CHFMR process were $55^{\circ}C$, pH 9.0, flux 7.79 ml/min, residence time 77min, and trypsin to substrate ratio, 0.01(w/w) After operating for 60min under the above conditions, $79\%$ of the total amount of initial gelatin was hydrolysed. Enzyme leakage was observed through the 10,000 MWCO membrane after the 20min of reactor operation, while none occurred after 5hr. Total enzyme leakage was about $12.95\%$ at $55^{\circ}C$ for 5hrs. However, there was no apparent correlation between enzyme leakage and substrate hydrolysis. The membrane has a significant effect on trypsin activity loss for 60min of the CHFMR operation. The CHFMR operating with the membrane lost $34\%$ of the initial activity versus a $23\%$ loss of activity after 3hr in the continuous reactor lacking the hollow fiber membrane. The measurement of fouling property showed that relative flux reduction was $91\%$ and flux recover rate was $92\%$ at $10\%$ substrate solution. The productivity(378.85mg product/mg enzyme) of the CHFMR was more than 4 times higher than that of the batch reactor at $55^{\circ}C$.

  • PDF

Nitrogen Removal Characteristic of Excreta Wastewater Using SBR and MBR Processes (SBR 및 MBR 공정을 이용한 분뇨폐수에서의 질소제거 특성)

  • Jung, Jin-Hee;Yoon, Young-Nae;Lee, Seul-Kee;Han, Young-Rip;Lee, Seung-Chul;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1485-1491
    • /
    • 2015
  • There are two treatment processes that are currently applied to ships are the biological treatment process using the activated sludge and the electrochemical treatment. However, neither of them are able to remove both nitrogen and phosphorus due to their limited ability to remove organic matters, which are main causes of the red tide. This study was conducted to identify the characteristics of nitrogen removal factors from manure wastewater by replacing the final settling tank in SBR (Sequencing Batch Reactor) process and applying immersion type hollow fiber membrane. SBR process is known to have an advantage of the least land requirement in special environment such as in ship and the immersion type hollow fiber membrane is more stable in water quality change. As the result, the average in the cases of DO (Dissolved Oxygen) is 2.9(0. 6~3.9) mg/L which was determined to be the denitrifying microorganism activity in anaerobic conditions. The average in the cases of ORP (Oxidation Reduction Potential) is 98.4~237.3 mV which was determined to be the termination of nitrification since the inflection point was formed on the ORP curve due to decrease in the stirring treatment after the aeration, same as in the cases of DO. Little or no variation in the pH was determined to have positive effect on the nitrification. T-N (Total Nitrigen) removal efficiencies of the finally treated water were 71.4%, 72.3% and 66.5% in relatively average figures, thus was not a distinct prominence. In being applied in ships in the future, the operating conditions and structure improvements are deemed necessary since the MEPC (Marine Environment Protection Committee). 227(64) ship sewage nitrogen is less than the standard of 20 Qi/Qe mg/L or the removal rate of 70%.

Multi-Dimension Scaling as an exploratory tool in the analysis of an immersed membrane bioreactor

  • Bick, A.;Yang, F.;Shandalov, S.;Raveh, A.;Oron, G.
    • Membrane and Water Treatment
    • /
    • v.2 no.2
    • /
    • pp.105-119
    • /
    • 2011
  • This study presents the tests of an Immersed Membrane BioReactor (IMBR) equipped with a draft tube and focuses on the influence of hydrodynamic conditions on membrane fouling in a pilot-scale using a hollow fiber membrane module of ZW-10 under ambient conditions. In this system, the cross-flow velocities across the membrane surface were induced by a cylindrical draft-tube. The relationship between cross-flow velocity and aeration strength and the influence of the cross-flow on fouling rate (under various hydrodynamic conditions) were investigated using Multi-Dimension Scaling (MDS) analysis. MDS technique is especially suitable for samples with many variables and has relatively few observations, as the data about Membrane Bio-Reactor (MBR) often is. Observations and variables are analyzed simultaneously. According to the results, a specialized form of MDS, CoPlot enables presentation of the results in a two dimensional space and when plotting variables ratio (output/input) rather than original data the efficient units can be visualized clearly. The results indicate that: (i) aeration plays an important role in IMBR performance; (ii) implementing the MDS approach with reference to the variables ratio is consequently useful to characterize performance changes for data classification.

Effects of Fouling on Permeate Flux during Ultrafiltration of Protein Solutions in a Hollow-Fiber Membrane Reactor (중공사 막반응기에서 단백질용액의 한외여과시 유출속도에 미치는 Fouling의 영향)

  • 김세권;변희국이환근하진환
    • KSBB Journal
    • /
    • v.9 no.5
    • /
    • pp.483-491
    • /
    • 1994
  • It is known that a key limiting factor to the use of ultrafiltration membranes is that of membrane fouling, which has been a major cause of permeate flux reduction. In this work, the effects of several factors (operating time, protein concentration, temperature and pH, etc.) influencing permeate flux during ultrafiltration of gelatin, casein and bovine serum albumin using a hollow fiber membrane(M. W. 10,000 cut off) reactor have been examined. The permeate flux of gelatin solution was maintained almost constant during the operation up to 6 hours, but those of casein and albumin solutions were decreased to 50% and 43% of initial value after an operation time of 60min. The permeate flux with increasing concentration and temperature of protein solutions increased, but the permeate flux showed a minimum value near the isoelectric point of proteins. The permeate fluxes of protein solution were enhanced by a temperature increase and pH control. Also, it is proposed that fouling can be decreased by the pretreatment of insoluble proteins with enzymes.

  • PDF

Comparison of Overall Oxygen Transfer Coefficient in the Membrane Coupled High Performance Reactor for a High Organic Loading Wastewater Treatment (고부하 유기성 폐수처리를 위한 분리막 결합형 순산소 고효율 포기장치의 총괄 산소전달효율 평가)

  • Kang, Bum-Hee;Lim, Kyeong-Ho;Lee, Sang-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.81-88
    • /
    • 2010
  • This study was conducted to find the capability of comparison of overall oxygen transfer coefficient in the membrane coupled high performance reactor (MPHCR) in treating high organic loading wastewater. Effluent quality had been analyzed while the influent organic loading rate was changed from 2 to $7kg\;COD/m^3{\cdot}day$. The oxygen transfer coefficients had been investigated using two-phase nozzle for operating variables which were internal circulation flowrate (5~8 L/min), air flow rate (0.0125~0.2 L/min), liquid temperature ($10{\sim}20^{\circ}C$), and pure-oxygen flow rate (0.0125~0.2 L/min). The overall oxygen transfer coefficient was increased with flowrate of internal circulation and air and high temperature. Especially, internal circulation flow rate showed distinct effect on overall oxygen transfer coefficient due to an increase of gas holdup and air-liquid contract area by two-phase nozzle. In the high range of organic loading rate from 4 to $7kg\;COD/m^3{\cdot}day$, the removable efficiency of COD was 91%. Conventional activated sludge process usually treat organic loading from 0.32 to $0.64kg\;COD/m^3{\cdot}day$ however, the MPHCR can treat 10 to 20 times higher if it would be compared to the conventional activated sludge process. Foaming problem often happened and caused biomass wash out of the reactor, therefore, the foaming should be controlled for the enhanced operation.

Evaluation of CIA(Conventional Intermittent Aeration) and MIA(Modified Intermittent Aeration) in Membrane Submerged Advanced Wastewater Treatment Process (멤브레인을 침지한 하수고도처리공법에서 기존간헐포기와 개량간헐포기의 효율성 비교평가)

  • Seo, In-Seok;Kim, Yeon-Kwon;Kim, Ji-Yeon;Kim, Hong-Suck;Kim, Byung-Goon;Choi, Chang-Gyu;Ahn, Hyo-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.257-264
    • /
    • 2006
  • In this study, the treatment of domestic wastewater in a field-scale membrane submerged intermittently aerated activated sludge process($210m^3/day$) was investigated under difference aeration methods. Operating temperature was 5.4 to 25.0 and membrane used in this study is a polyethylene hollow fiber membrane(pore size $0.4{\mu}m$). The range of operating flux was $9.7{\sim}24.4l/m^2-h$ and membrane permeates periodically operated for 7min followed idle for 3 min. The results showed that MIA(modified intermittent aeration) was more efficient in nitrogen and phosphorus removal. The removal efficiencies of T-N and T-P were 73.0% and 69.6% for CIA(conventional intermittent aeration) and 57.5%, 58.6% for MIA (modified intermittent aeration). With application of modified intermittent aeration, DO reached nearly Omg/l within 10 minutes after air off. Organics of influent could be entirely consumed to the denitrification and the P-release without the influence by remained DO in intermittent aeration reactor. Therefore, newly developed KSMBR(Kowaco-KMS-Ssangyoung Membrane Bio-Reactor) process with modified intermittent aeration can be one of the useful process for stable nitrogen and phosphorus removal.

Behavior and Influence of EPS on Membrane Fouling by Changing of HRT in MBR with Gravitational Filtration (중력여과 방식의 MBR을 이용한 하수처리에서 HRT 변화에 따른 EPS의 거동과 막오염에 대한 영향)

  • Kim, SI-Won;Kwak, Sung-Jin;Lee, Eui-Sin;Hong, Seung-Mo;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.865-870
    • /
    • 2006
  • The behavior and influence of EPS on membrane fouling by changing of hydraulic retention time was investigated, using lab. scale submerged membrane bio-reactor, which was operated with gravitational filtration and fed supernatant of primary sedimentation in waste water treatment plant as influent. The membrane was adopted micro-filter of polyethylene hollow fiber. EPS was analysed as polysaccharides and protein especially, into soluble and bound EPS separately. The concentration of soluble EPS was increased at short HRT, then membrane fouling was rapidly progressed and flux was depressed. The most of EPS clogged membrane pore were polysaccharides, while protein was important parameter affected on membrane fouling because of it's more accumulating in the more term operating.

Development and Field Application of the Advanced Wastewater Treatment process (KSMBR) by Hollow Fiber Submerged Membrane (침지식 중공사막을 결합한 Dynamic state 하수고도처리공정(KSMBR process)의 개발 및 현장적용평가)

  • Kim, Ji-yeon;Seo, In-seok;Kim, Hong-suck;Kim, Youn-kwon;Kim, Byung-goon;Choi, Chang-gyu;Ahn, Hyo-won;Seo, Wan-seok;Jang, Moon-seog
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.358-363
    • /
    • 2006
  • KSMBR process is dynamic state advanced wastewater treatment applied with Trisectional Aeration (TSA) mode combined with membrane. TSA was remodeled conventional intermittent aeration which was operated nonaeration-aeration. TSA operates nonaeration ($N_1$) - aeration (A) - nonaeration ($N_2$) in Trisectional Aeration Reactor (TAR). Organics of influent could be nearly consumed to denitrification without influence by remained DO in TAR and it could be operated about sludge return ratio of 1Q (influent base). The purpose of this study was to apply KSMBR to the full-scale plant and to evaluate efficiency of nitrogen and phosphorus removal and TSA operation. The result of this study, average CODcr/T-N and CODcr/T-P ratio were 7.8 and 59.6, respectively. BOD, TCODcr, SS, T-N, T-P, E-coli removal efficiency were 98.4, 95.2, 73.0, 69.6, 99.95 %, respectively. KSMBR obtained high removal efficiencies of C, N and P when it applied full-scale plant.