• Title/Summary/Keyword: Holling type II

Search Result 21, Processing Time 0.024 seconds

DYNAMICS OF A ONE-PREY AND TWO-PREDATOR SYSTEM WITH TWO HOLLING TYPE FUNCTIONAL RESPONSES AND IMPULSIVE CONTROLS

  • Baek, Hunki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.151-167
    • /
    • 2012
  • In this paper, we investigate the dynamic behaviors of a one-prey and two-predator system with Holling-type II functional response and defensive ability by introducing a proportion that is periodic impulsive harvesting for all species and a constant periodic releasing, or immigrating, for predators at different fixed time. We establish conditions for the local stability and global asymptotic stability of prey-free periodic solutions by using Floquet theory for the impulsive equation, small amplitude perturbation skills. Also, we prove that the system is uniformly bounded and is permanent under some conditions via comparison techniques. By displaying bifurcation diagrams, we show that the system has complex dynamical aspects.

Dynamics of Vaccination Model with Holling Type II Functional Response

  • Bhatia, Sumit Kaur;Chauhan, Sudipa;Nasir, Umama
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.319-334
    • /
    • 2020
  • We propose a mathematical model with Holling type II functional response, to study the dynamics of vaccination. In order to make our model more realistic, we have incorporated the recruitment of infected individuals as a continuous process. We have assumed that vaccination cannot be perfect and there is always a possibility of re-infection. We have obtained the existence of a disease free and endemic equilibrium point, when the recruitment of infective is not considered and also obtained the existence of at least one endemic equilibrium point when recruitment of infective is considered. We have proved that if Rv < 1, disease free equilibrium is locally asymptotically stable, which leads to the elimination of the disease from the population. The persistence of the model has also been established. Numerical simulations have been done to establish the results obtained.

Permanence of an impulsive food web system with Holling-type II functional responses

  • Baek, Hun-Ki;Park, Jun-Pyo;Do, Young-Hae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.211-217
    • /
    • 2009
  • In this paper, we are studying the property for permanence of a three species food chain system with impulsive perturbations and Holling type II functional response, species which is important concept or property in ecological systems. Specially, we give the conditions for the permanence of this system. To do it, we consider the comparison method which is typical skill happened in impulsive differential inequalities. In addition, we reaffirm our results by using a numerical example.

  • PDF

On the Dynamical Behavior of a Two-Prey One-Predator System with Two-Type Functional Responses

  • Baek, Hunki
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.647-660
    • /
    • 2013
  • In the paper, a two-prey one-predator system with defensive ability and Holling type-II functional responses is investigated. First, the stability of equilibrium points of the system is discussed and then conditions for the persistence of the system are established according to the existence of limit cycles. Numerical examples are illustrated to attest to our mathematical results. Finally, via bifurcation diagrams, various dynamic behaviors including chaotic phenomena are demonstrated.

GLOBAL STABILITY OF VIRUS DYNAMICS MODEL WITH IMMUNE RESPONSE, CELLULAR INFECTION AND HOLLING TYPE-II

  • ELAIW, A.M.;GHALEB, SH.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.39-63
    • /
    • 2019
  • In this paper, we study the effect of Cytotoxic T Lymphocyte (CTL) and antibody immune responses on the virus dynamics with both virus-to-cell and cell-to-cell transmissions. The infection rate is given by Holling type-II. We first show that the model is biologically acceptable by showing that the solutions of the model are nonnegative and bounded. We find the equilibria of the model and investigate their global stability analysis. We derive five threshold parameters which fully determine the existence and stability of the five equilibria of the model. The global stability of all equilibria of the model is proven using Lyapunov method and applying LaSalle's invariance principle. To support our theoretical results we have performed some numerical simulations for the model. The results show the CTL and antibody immune response can control the disease progression.

QUALITATIVE ANALYSIS OF A DIFFUSIVE FOOD WEB CONSISTING OF A PREY AND TWO PREDATORS

  • Shi, Hong-Bo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1827-1840
    • /
    • 2013
  • This paper is concerned with the positive steady states of a diffusive Holling type II predator-prey system, in which two predators and one prey are involved. Under homogeneous Neumann boundary conditions, the local and global asymptotic stability of the spatially homogeneous positive steady state are discussed. Moreover, the large diffusion of predator is considered by proving the nonexistence of non-constant positive steady states, which gives some descriptions of the effect of diffusion on the pattern formation.

DYNAMIC ANALYSIS OF A PERIODICALLY FORCED HOLLING-TYPE II TWO-PREY ONE-PREDATOR SYSTEM WITH IMPULSIVE CONTROL STRATEGIES

  • Kim, Hye-Kyung;Baek, Hun-Ki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.225-247
    • /
    • 2010
  • In this paper, we establish a two-competitive-prey and one-predator Holling type II system by introducing a proportional periodic impulsive harvesting for all species and a constant periodic releasing, or immigrating, for the predator at different fixed time. We show the boundedness of the system and find conditions for the local and global stabilities of two-prey-free periodic solutions by using Floquet theory for the impulsive differential equation, small amplitude perturbation skills and comparison techniques. Also, we prove that the system is permanent under some conditions and give sufficient conditions under which one of the two preys is extinct and the remaining two species are permanent. In addition, we take account of the system with seasonality as a periodic forcing term in the intrinsic growth rate of prey population and then find conditions for the stability of the two-prey-free periodic solutions and for the permanence of this system. We discuss the complex dynamical aspects of these systems via bifurcation diagrams.

MEAN SQUARE STABILITY IN A MODIFIED LESLIE-GOWER AND HOLLING-TYPE II PREDATOR-PREY MODEL

  • Pal, Pallav Jyoti;Sarwardi, Sahabuddin;Saha, Tapan;Mandal, Prashanta Kumar
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.781-802
    • /
    • 2011
  • Of concern in the paper is a Holling-Tanner predator-prey model with modified version of the Leslie-Gower functional response. Dynamical behaviours such as stability, permanence and Hopf bifurcation have been carried out deterministically. Using the normal form theory and center manifold theorem, the explicit formulae determining the stability and direction of Hopf bifurcation have been derived. The deterministic model is extended to a stochastic one by perturbing the growth equation of prey and predator by white and colored noises and finally the mean square stability of the stochastic model systems is investigated analytically. An extensive quantitative analysis has been performed based on numerical computation so as to validate the applicability of the proposed mathematical model.

STABILITY ANALYSIS FOR PREDATOR-PREY SYSTEMS

  • Shim, Seong-A
    • The Pure and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.211-229
    • /
    • 2010
  • Various types of predator-prey systems are studied in terms of the stabilities of their steady-states. Necessary conditions for the existences of non-negative constant steady-states for those systems are obtained. The linearized stabilities of the non-negative constant steady-states for the predator-prey system with monotone response functions are analyzed. The predator-prey system with non-monotone response functions are also investigated for the linearized stabilities of the positive constant steady-states.