DOI QR코드

DOI QR Code

A HOLLING TYPE II FOOD CHAIN SYSTEM WITH BIOLOGICAL AND CHEMICAL CONTROLS

  • Baek, Hunki (DEPARTMENT OF MATHEMATICS KYUNGPOOK NATIONAL UNIVERSITY)
  • Published : 2009.04.30

Abstract

For a class of Holling type II food chain systems with biological and chemical controls, we give conditions of the local stability of prey-free periodic solutions and of the permanence of the system. Further, we show the system is uniformly bounded.

Keywords

References

  1. D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66, of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Science & Technical, Harlo, UK, 1993
  2. J. B. Collings, The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol. 36 (1997), 149–168 https://doi.org/10.1007/s002850050095
  3. S.-B. Hsu and T.-W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math. 55 (1995), no. 3, 763–783 https://doi.org/10.1137/S0036139993253201
  4. K. Kitamura, K. Kashiwagi, K.-I. Tainaka, T. Hayashi, J. Yoshimura, T. Kawai, and T. Kajiwara, Asymmetrical effect of migration on a prey-predator model, Physics Letters A 357 (2006), 213–217 https://doi.org/10.1016/j.physleta.2006.04.067
  5. V. Lakshmikantham, D. Bainov, and P.Simeonov, Theory of Impulsive Differential Equations, World Scientific Publisher, Singapore, 1989
  6. X. Liu and L. Chen, Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator, Chaos, Solitons and Fractals 16 (2003), 311–320 https://doi.org/10.1016/S0960-0779(02)00408-3
  7. B. Liu, Z. Teng, and L. Chen, Analsis of a predator-prey model with Holling II functional response concerning impulsive control strategy, J. of Comp. and Appl. Math. 193(2006), no. 1, 347–362 https://doi.org/10.1016/j.cam.2005.06.023
  8. B. Liu, Y. Zhang, and L. Chen, Dynamic complexities in a Lotka-Volterra predator-prey model concerning impulsive control strategy, Int. J. of Bifur. and Chaos 15 (2005), no. 2, 517–531
  9. E. Saez and E. Gonzalez-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math. 59(1999), no. 5, 1867–1878 https://doi.org/10.1137/S0036139997318457
  10. G. T. Skalski and J. F. Gilliam, Funtional responses with predator interference: viable alternatives to the Holling type II mode, Ecology 82 (2001), 3083–3092
  11. S. Tang, Y. Xiao, L. Chen, and R. A. Cheke, Integrated pest management models and their dynamical behaviour, Bulletin of Math. Biol. 67 (2005), 115–135 https://doi.org/10.1016/j.bulm.2004.06.005
  12. S. Zhang and L. Chen, Chaos in three species food chain system with impulsive perturbations, Chaos Solitons and Fractals 24 (2005), 73–83
  13. S. Zhang and L. Chen, A Holling II functional response food chain model with impulsive perturbations, Chaos Solitons and Fractals 24 (2005), 1269–1278 https://doi.org/10.1016/j.chaos.2004.09.051
  14. S. Zhang, L. Dong, and L. Chen, The study of predator-prey system with defensive ability of prey and impulsive perturbations on the predator, Chaos, Solitons and Fractals 23 (2005), 631–643 https://doi.org/10.1016/j.chaos.2004.05.044
  15. S. Zhang, D. Tan, and L. Chen, Dynamic complexities of a food chain model with impulsive perturbations and Beddington-DeAngelis functional response, Chaos Solitons and Fractals 27 (2006), 768–777 https://doi.org/10.1016/j.chaos.2005.04.047