• Title/Summary/Keyword: Hole-size of evaporation boat

Search Result 6, Processing Time 0.02 seconds

Electrical Characteristics of Organic Light-emitting Diodes Fabricated by Varying a Hole-size in Evaporation Boat

  • Kim, Weon-Jong;Park, Young-Ha;Cho, Kyung-Soon;Hong, Jin-Woong;Shin, Jong-Yeol;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.105-109
    • /
    • 2008
  • Electrical characteristics of organic light-emitting diodes were investigated by varying a hole-size in evaporation boat in the device structure of ITO/tris(8-hydroxyquinoline) aluminum$(Alq_3)$/Al. The device was manufactured using a thermal evaporation under a base pressure of $5{\times}10^{-6}$ Torr. The $Alq_3$ emitting organics were evaporated to be a thickness of 100 nm at a deposition rate of $1.5{\AA}/s$. A cylindrical-shaped evaporation boat was made out of stainless steel with a small size of hole on top of the boat. Several evaporation boats were made having a different hole size on top; 0.8 mm, 1.0 mm, 1.5 mm, and 3.0 mm. We found that when the hole size on top of the evaporation boat is 1.0 mm, the average roughness is rather smoother compared to the other ones. Also, luminance and external quantum efficiency are superior to the others. Compared to the ones from the devices made with the hole-size of 0.8 mm boat. The luminance and external quantum efficiency of the device made with the hole-size of 1.0 mm boat were improved by a factor of seventy and thirty three, respectively. Also operating voltage is reduced to 2 V.

Efficiency Improvement of OLEDs depending on the Hole-size of Crucible Boat (Crucible Boat의 홀 크기에 따른 유기발광소자의 효율 개선)

  • Kim, Weon-Jong;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.569-574
    • /
    • 2008
  • In the device structure of ITO/tris(8-hydroxyquinoline) aluminum ($Alq_3$)/Al device, we investigated the efficiency improvement of organic light-emitting diodes (OLEDs) depending on the hole-size of crucible boat. The device was manufactured using a thermal evaporation under the base pressure of $5{\times}10^{-6}\;Torr$. The $Alq_3$ organics were evaporated to be 100 nm thick at a deposition rate of $1.5\AA/s$, and in order to investigate the optimal surface roughness of $Alq_3$, the $Alq_3$ was thermally evaporated to be 0.8 mm, 1.0 mm, and 1.5 mm as a hole-size of the boat, respectively. We found that luminance and external quantum efficiency are superior when the hole-size of the boat is 1.0 mm. The external quantum efficiency of the device made with the hole-size of 1.0 mm boat were improved by a factor of ten compared to the devices made with the hole-size of non boat.

Electrical Characteristics of OLEDs depending on the Boat hole-size of a Crucible (Crucible boat의 구멍 크기에 따른 유기발광소자의 전기적 특성)

  • Kim, Weon-Jong;Lee, Young-Hwan;Lee, Sang-Kyo;Kim, Tae-Wan;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.29-30
    • /
    • 2007
  • In a device structure of ITO/tris(8-hydroxyquinoline) aluminum $(Alq_3)$/Al device, We investigated an the electrical characteristics of Organic Light-Emitting Diodes (OLEDs) depending on the hole-size of boat. The device was manufactured using a thermal evaporation under a base pressure of $5{\times}10^{-6}$ [Torr]. The $Alq_3$ organics were evaporated to be 100 [nm] thick at a deposition rate of $1.5[{\AA}/s]$, and in order to investigate the optimal surface roughness of $Alq_3$, the $Alq_3$ was thermally evaporated to be 0.8 [mm], 1.0 [mm], 1.5 [mm], and 3.0 [mm] as a hole-size of the boat respectively. We found that when the hole-size of the boat is 1.0 [mm], luminance and external quantum efficiency are superior.

  • PDF

Affect influenceable the Electrical and Optical Characteristics depending on the Deposition Condition of BCP (BCP의 증착조건에 따른 전기적 및 광학적 특성에 미치는 영향)

  • Kim, Weon-Jong;Choi, Hyun-Min;Kim, Joung-Sik;Jeong, In-Bum;Lee, Sang-Kyo;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.34-35
    • /
    • 2009
  • We have studied the electrical and optical of organic light-emitting diodes depending on hole size of crucible boat using BCP materials. The thickness of TPD, $Alq_3$ and BCP was manufactured 40 nm, 60 nm and 5 nm under a base pressure of $5\times10^{-6}$ Torr using at thermal evaporation, respectively. In order to investigate the optimal surface roughness of BCP, the BCP was thermally evaporated to be 0.8 nun, 1.0 mm, 1.2 mm and 1.5 mm as a hole size of crucible boat, respectively. As the experimental results, we found that the luminous efficiency and the external quantum efficiency of the device is superior to others when hole size of crucible boat using BCP is 1.2 mm. Also, compared to the ones from the devices having the hole size of crucible boat is 1.0 mm and 1.5mm layer, the external quantum efficiency were improved by 2.5 and 2.4 times.

  • PDF

Electrical Properties of OLEDs due to the Hole-size of Crucible Boat and Deposition Rate of Hole Transport Layer (Crucible Boat 홀 크기와 정공 수송층 증착속도에 따른 유기밭광 다이오드의 전기적 특성)

  • Kim, Weon-Jong;Shin, Hyun-Teak;Shin, Jong-Yeol;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.74-80
    • /
    • 2009
  • In the structure of ITO/N,N'-diphenyl-N,N' bis (3-methylphenyl)-1,1'-biphenyl-4,4'-diamine(TPD)/tris (8-hydroxyquinoline)aluminum($Alq_3$)/Al device, we studied the efficiency improvement of organic light-emitting diodes due to variation of deposition rate of hole transport layer (TPD) materials using hole-size of crucible boat. The thickness of TPD and $Alq_3$ was manufactured 40 nm, 60 nm, respectively under a base pressure of $5{\times}10^{-6}$ Torr using a thermal evaporation. The $Alq_3$ used for an electron-transport and emissive layer were evaporated to be at a deposition rate of $2.5\;{\AA}/s$. When the deposition rate of TPD increased from 1.5 to $3.0\;{\AA}/s$, we studied the efficiency improvement of TPD using the hole-size of crucible is 1.0 mm. When the deposition rate of TPD is $2.5\;{\AA}/s$, we found that the average roughness is rather smoother, the luminous efficiency the external quantum efficiency is superior to the others. Compared to the two from the devices made with the deposition rate of TPD is $2.0\;{\AA}/s$ and $3.0\;{\AA}/s$, the external quantum efficiency was improved by four-times and two-times, respectively.

Influence of the Optical Characteristics and Conductive Mechanism depending on the Deposition Condition of BCP (BCP의 증착 조건에 따른 광학적 특성 및 전도 기구에 미치는 영향)

  • Kim, Weon-Jong;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.980-986
    • /
    • 2009
  • In a triple-layered structure of ITO/N,N'-diph enyl-N,N'bis(3-methylphenyl)-1,1' - biphenyl-4,4'-diamine(TPD)/tris(8-hydroxyquinoline)aluminum($Alq_3$)/(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP)/Al device, we have studied the electrical and optical characteristics of organic light-emitting diodes(OLEDs) depending on the deposition condition of BCP layer. Several different sizes of holes on boat and several different deposition rates were employed in evaporating the organic materials. And then, electrical properties of the organic light-emitting diodes were measured and the performance of the devices was analyzed. It was found that the hole-size of crucible boat and the evaporation rate affect on the surface roughness of BCP layer as well as the performance of the device. When the hole-size of crucible boat and the deposition rate of BCP are 1.2 mm and $1.0\;{\AA}/s$, respectively, average surface roughness of BCP layer is lower and the efficiency of the device is higher than the ones made with other conditions. From the analysis of current density-luminance-voltage characteristics of a triple layered device, we divided the conductive mechanism by four region according to applied voltage. So we have obtained a coefficient of ${\beta}_{ST}$ in schottky region is $3.85{\times}10^{-24}$, a coefficient of ${\beta}_{PF}$ in Poole-Frenkel region is $7.35{\times}10^{-24}$, and a potential barrier of ${\phi}_{FN}$ in Fower-Nordheim region is 0.39 eV.