• Title/Summary/Keyword: Hole-Drilling

Search Result 390, Processing Time 0.026 seconds

Residual stresses and viscoelastic deformation of an injection molded automotive part

  • Kim, Sung-Ho;Kim, Chae-Hwan;Oh, Hwa-Jin;Choi, Chi-Hoon;Kim, Byoung-Yoon;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.183-190
    • /
    • 2007
  • Injection molding is one of the most common operations in polymer processing. Good quality products are usually obtained and major post-processing treatment is not required. However, residual stresses which exist in plastic parts affect the final shape and mechanical properties after ejection. Residual stresses are caused by polymer melt flow, pressure distribution, non-uniform temperature field, and density distribution. Residual stresses are predicted in this study by numerical methods using commercially available softwares, $Hypermesh^{TM},\;Moldflow^{TM}\;and\;ABAQUS^{TM}$. Cavity filling, packing, and cooling stages are simulated to predict residual stress field right after ejection by assuming an isotropic elastic solid. Thermo-viscoelastic stress analysis is carried out to predict deformation and residual stress distribution after annealing of the part. Residual stresses are measured by the hole drilling method because the automotive part selected in this study has a complex shape. Residual stress distribution predicted by the thermal stress analysis is compared with the measurement results obtained by the hole drilling method. The molded specimen has residual stress distribution in tension, compression, and tension from the surface to the center of the part. Viscoelastic deformation of the part is predicted during annealing and the deformed geometry is compared with that measured by a three dimensional scanner. The viscoelastic stress analysis with a thermal cycle will enable us to predict long term behavior of the injection molded polymeric parts.

Feasibility Evaluation of Micro Hole Drilling and the Material Properties of Si3N4/hBN Ceramic with hBN Contents (hBN의 첨가량에 따른 Si3N4/hBN 세라믹의 재료특성 및 마이크로 홀가공 유용성 평가)

  • Park, Kwi-Deuk;Go, Gun-Ho;Lee, Dong-Jin;Kim, Jin-Hyeong;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2017
  • In this paper, $Si_3N_4/hBN$ ceramics with various hexagonal boron nitride (hBN) contents (0, 10, 20, or 30 wt%) were fabricated via spark plasma sintering (SPS) at $1500^{\circ}C$, 50MPa, and 10m holding time. The material properties such as the relative density, hardness, and fracture toughness were systematically evaluated according to the hBN content in the $Si_3N_4/hBN$ ceramics. The results show that relative density, hardness, and fracture toughness continuously decreased as the hBN content increased. In addition, peak-step drilling (with tool diameter $500{\mu}m$) was performed to observe the effects of hBN content in micro-hole shape and cutting force. A machined hole diameter of $510{\mu}m$ (entrance) and stable cutting force were obtained at 30 wt% hBN content. Consequently, $Si_3N_4/30wt%$ hBN ceramic is a feasible material upon which to apply semi-conductor components, and this study is very meaningful for determining correlations between material properties and machining performance.

Residual Stress Distribution on the Fillet Weldment used by Finite Element Method (유한요소법을 이용한 필렛용접 이음부의 잔류응력분포)

  • Kim, Hyun Sung;Woo, Sang Ik;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.197-207
    • /
    • 2000
  • A transient heat transfer analysis and thermo-elastic analysis have been performed for the residual stress distribution on the fillet weldment used by finite element method. Specimen is fabricated single-pass fillet welding. This computation was performed for conditions including surface heat flux and temperature dependent thermo-physical properties using by heat input as parameter. Also, cut-off temperature of residual stress estimation by thermo-elastic analysis is determined. The fillet weldment were measured to determined their residual stress distributions for using hole-drilling method. As result, it was found that large tensile residual stress is about material yield strength, and the numerical simulation results for finite element method similar to residual stresses by hole-drilling method and other exiting research. Also, cut-off temperature is effectively determined by temperature which calculated maximum thermal stress equal to material yield strength.

  • PDF

Application of femtosecond laser hole drilling with vibration for thin Invar alloy using fine metal mask in AMOLED manufacturing process (AMOLED 제조공정에 사용되는 Fine Metal Mask 용 얇은 Invar 합금의 진동자를 이용한 펨토초 레이저 응용 홀 드릴링)

  • Choi, Won-Suk;Kim, Hoon-Young;Shin, Young-Gwan;Choi, Jun-ha;Chang, Won-Seok;Kim, Jae-Gu;Cho, Sung-Hak;Choi, Doo-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.44-49
    • /
    • 2020
  • One of display trends today is development of high pixel density. To get high PPI, a small size of pixel must be developed. RGB pixel is arranged by evaporation process which determines pixel size. Normally, a fine metal mask (FMM; Invar alloy) has been used for evaporation process and it has advantages such as good strength, and low thermal expansion coefficient at low temperature. A FMM has been manufactured by chemical etching which has limitation to controlling the pattern shape and size. One of alternative method for patterning FMM is laser micromachining. Femtosecond laser is normally considered to improve those disadvantages for laser micromachining process due to such short pulse duration. In this paper, a femtosecond laser drilling for thickness of 16 ㎛ FMM is examined. Additionally, we introduce experimental results for controlling taper angle of hole by vibration module adapted in laser system. We used Ti:Sapphire based femtosecond laser with attenuating optics, co-axial illumination, vision system, 3-axis linear stage and vibration module. By controlling vibration amplitude, entrance and exit diameters are controllable. Using vibrating objective lens, we can control taper angle when femtosecond laser hole drilling by moving focusing point. The larger amplitude of vibration we control, the smaller taper angle will be carried out.

THE EFFECT OF LOCATION AND ANGLE OF DRILLING ON THE CHANGES OF THE DISTANCE BETWEEN TWO BLOCK SPECIMENS DURING SCREWING ON MINIPLATE FIXATION (소형금속판에 고정나사의 삽입시 drilling의 위치 및 각도에 따른 시편의 이동량에 대한 효과)

  • Oh, Hyun-Chul;An, Jin-Suk;Gu, Hong;Kook, Min-Suk;Park, Hong-Ju;Oh, Hee-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.3
    • /
    • pp.213-221
    • /
    • 2006
  • Purpose This study was aimed to evaluate the effect of the location and angle of drilling on the changes of the distance between the two block specimens. Materials and methods In experimental group 1, the screw holes were prepared by drilling in the distal portion of compression part of the plate at $90^{\circ}$. In experimental group 2, the drilling was performed at an angle of $30^{\circ}$ proximal to the miniplate, and in experimental group 3, at $30^{\circ}$ distal respectively. In control group, the drilling was performed to the center of hole at $90^{\circ}$. The fixation screw length was 5 mm, 7 mm, and 9 mm in all groups. The results were as follows. Results 1. In control group, the mean changes between two specimens were 0.01 mm, 0.02 mm, and 0.00 mm in 5 mm, 7 mm, and 9 mm screws respectively. 2. In experimental group 1, the compression part was moved toward the retention part. The range of mean changes were from -0.39 mm to -0.43 mm. 3. In experimental group 2, the compression part was moved toward the retention part. The range of mean changes were from -0.51 mm to -0.56 mm. 4. In experimental group 3, the compression part was moved apart from the retention part and the range of mean changes were from 0.55 mm to 0.56 mm. 5. The changes were significantly different between all groups(p<0.01). Conclusion These results suggest that 0.4$\sim$0.5 mm of compressive effect can be achieved by drilling on the distal area of the screw hole at an angle of $90^{\circ}$ and by the proximal angulation to the miniplate, and the gap between specimens can be increased by distal angulation to the miniplate during drilling.

Dynamic Characteristics of Droplet Impinging on Multi-layer Texture Surfaces (이중으로 텍스쳐 된 표면에 충돌하는 액적의 동적 특성)

  • Moon, Joo Hyun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.58-63
    • /
    • 2016
  • This study presents the dynamic characteristics of an impinging droplet on hydrophobic and hydrophilic surfaces with various texture area fractions. The flat surface was fabricated by using the drilling technique to make micro-meter hole-patterned surfaces, which shows hydrophobic textured surfaces. Moreover, the hydrophilic textured surfaces were manufactured by anodizing technique on the micro-meter hole-patterned surfaces to generate multi-layer surfaces. Impinging droplet experiments were conducted for various hole-patterned surfaces, with changing impact velocity and texture area fractions. It is observed that an anodizing technique increases wettability by decrease in hole diameter on the textured surfaces. However, micro-drilled surfaces decreases wettability because the hole diameter was so large that air can be trapped under the holes. In addition, the maximum spreading diameter decreases with the texture area fraction for the micro-drilled surfaces because of decrease in wettability.

A Method of Hole Pass-Through Evaluation for EDM Drilling (방전드릴링에서 홀 관통 평가 방법)

  • Lee, Cheol-Soo;Choi, In-Hugh;Heo, Eun-Young;Kim, Jong-Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.3
    • /
    • pp.220-226
    • /
    • 2012
  • The Electric discharge machining (EDM) process is used to minimize the difference between designed feature and machined feature while the most workpiece is removed through the cutting processes. The tiny-deep hole machining and perpendicular wall machining in mold and die are good applications of EDM. Among EDM equipment, the super drill uses the hollowed electrode to eliminate the debris which causes the second discharge with the electrode and degrades the machining quality. Through the hollow, the high pressured discharge oil is supplied to remove the debris together with the spindle rotation. The thin-hollow electrode tends to easily wear out compared to the sold die-sinking electrode and its wear rate is might not allowed to monitor in real time during discharging. Up to now, the wear amount is measured by off line method, which leads machining time to increase because the hole pass-through moment can be check by visual (manually) with the extra tool path. Therefore, this study suggests the attractive method to evaluate the hole pass-through moment in which the gap voltage and z-axis encoder pulse are monitored to predict the moment. The commercial super drill is used to validate the proposed method and the experiment is carried out.

Tensile Strength of Plate with Bolt Hole and Bearing Strength of Bolted Connection by Oxygen Torch Cut (볼트홀을 산소토치로 천공한 강재의 인장강도 및 지압이음강도)

  • Park, Yong Myung;Lee, Kun Joon;Kim, Dong Hyun;Ju, Ho Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.617-626
    • /
    • 2014
  • In this paper, experiments for the evaluation of tensile strength of steel plate with bolt hole and bearing strength of bolted connection were performed, where bolt holes were punched by drilling and oxygen torch, respectively. For the tensile tests, drilled and oxygen torch punched steel plate specimens of 10mm and 15mm thickness were made from structural angles and H-shapes, respectively. For the bearing strength evaluation, test specimens were fabricated with base plates and splice plates those were also punched by drilling and oxygen torch, respectively. The Vicker's hardness were measured around the bolt hole to investigate material property change due to heat effect by oxygen torch cut. Numerical analysis was also performed to investigate the bearing strength of bolted joints due to the increase of hardness around the bolt hole by oxygen torch cut.

A STUDY ON THE TEMPERATURE CHANGES OF BONE TISSUES DURING IMPLANT SITE PREPARATION (임플랜트 식립부위 형성시 골조직의 온도변화에 관한 연구)

  • Kim Pyung-Il;Kim Yung-Soo;Jang Kyung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.1
    • /
    • pp.1-17
    • /
    • 2002
  • The purpose of this study is to examine the possibility of thermal injury to bone tissues during an implant site preparation under the same condition as a typical clinical practice of $Br{\aa}nemark$ implant system. All the burs for $Br{\aa}nemark$ implant system were studied except the round bur The experiments involved 880 drilling cases : 50 cases for each of the 5 steps of NP, 5 steps of RP, and 7 steps of WP, all including srew tap, and 30 cases of 2mm twist drill. For precision drilling, a precision handpiece restraining system was developed (Eungyong Machinery Co., Korea). The system kept the drill parallel to the drilling path and allowed horizontal adjustment of the drill with as little as $1{\mu}m$ increment. The thermocouple insertion hole. that is 0.9mm in diameter and 8mm in depth, was prepared 0.2mm away from the tapping bur the last drilling step. The temperatures due to countersink, pilot drill, and other drills were measured at the surface of the bone, at the depths of 4mm and 8mm respectively. Countersink drilling temperature was measured by attaching the tip of a thermocouple at the rim of the countersink. To assure temperature measurement at the desired depths, 'bent-thermocouples' with their tips of 4 and 8mm bent at $120^{\circ}$ were used. The profiles of temperature variation were recorded continuously at one second interval using a thermometer with memory function (Fluke Co. U.S.A.) and 0.7mm thermocouples (Omega Co., U.S.A.). To simulate typical clinical conditions, 35mm square samples of bovine scapular bone were utilized. The samples were approximately 20mm thick with the cortical thickness on the drilling side ranging from 1 to 2mm. A sample was placed in a container of saline solution so that its lower half is submerged into the solution and the upper half exposed to the room air, which averaged $24.9^{\circ}C$. The temperature of the saline solution was maintained at $36.5^{\circ}C$ using an electric heater (J. O Tech Co., Korea). This experimental condition was similar to that of a patient s opened mouth. The study revealed that a 2mm twist drill required greatest attention. As a guide drill, a twist drill is required to bore through a 'virgin bone,' rather than merely enlarging an already drilled hole as is the case with other drills. This typically generates greater amount of heat. Furthermore, one tends to apply a greater pressure to overcome drilling difficulty, thus producing even greater amount heat. 150 experiments were conducted for 2mm twist drill. For 140 cases, drill pressure of 750g was sufficient, and 10 cases required additional 500 or 100g of drilling pressure. In case of the former. 3 of the 140 cases produced the temperature greater than $47^{\circ}C$, the threshold temperature of degeneration of bone tissue (1983. Eriksson et al.) which is also the reference temperature in this study. In each of the 10 cases requiring extra pressure, the temperature exceeded the reference temperature. More significantly, a surge of heat was observed in each of these cases This observations led to addtional 20 drilling experiments on dense bones. For 10 of these cases, the pressure of 1,250g was applied. For the other 10, 1.750g were applied. In each of these cases, it was also observed that the temperature rose abruptly far above the thresh old temperature of $47^{\circ}C$, sometimes even to 70 or $80^{\circ}C$. It was also observed that the increased drilling pressure influenced the shortening of drilling time more than the rise of drilling temperature. This suggests the desirability of clinically reconsidering application of extra pressures to prevent possible injury to bone tissues. An analysis of these two extra pressure groups of 1,250g and 1,750g revealed that the t-statistics for reduced amount of drilling time due to extra pressure and increased peak temperature due to the same were 10.80 and 2.08 respectively suggesting that drilling time was more influenced than temperature. All the subsequent drillings after the drilling with a 2mm twist drill did not produce excessive heat, i.e. the heat generation is at the same or below the body temperature level. Some of screw tap, pilot, and countersink showed negative correlation coefficients between the generated heat and the drilling time. indicating the more the drilling time, the lower the temperature. The study also revealed that the drilling time was increased as a function of frequency of the use of the drill. Under the drilling pressure of 750g, it was revealed that the drilling time for an old twist drill that has already drilled 40 times was 4.5 times longer than a new drill The measurement was taken for the first 10 drillings of a new drill and 10 drillings of an old drill that has already been used for 40 drillings. 'Test Statistics' of small samples t-test was 3.49, confirming that the used twist drills require longer drilling time than new ones. On the other hand, it was revealed that there was no significant difference in drilling temperature between the new drill and the old twist drill. Finally, the following conclusions were reached from this study : 1 Used drilling bur causes almost no change in drilling temperature but increase in drilling time through 50 drillings under the manufacturer-recommended cooling conditions and the drilling pressure of 750g. 2. The heat that is generated through drilling mattered only in the case of 2mm twist drills, the first drill to be used in bone drilling process for all the other drills there is no significant problem. 3. If the drilling pressure is increased when a 2mm twist drill reaches a dense bone, the temperature rises abruptly even under the manufacturer-recommended cooling conditions. 4. Drilling heat was the highest at the final moment of the drilling process.

Influnce of machinability on the Tool life of ADI Materials in Drilling (ADI 재료의 드릴 가공시 절삭특성이 공구수명에 미치는 영향)

  • 조규재
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.46-56
    • /
    • 1996
  • Drilling tests were carried out austempered ductile castiron(ADI) to clarify the factors influencing the drilling characteristics of ADI material. The machinability of material was evaluated using high speed steel drill and cobalt contained drill of 6mm diameter. The spheroidal graphite cast iron materials were austenized at 90$0^{\circ}C$ for 1 hour and then wear was kept at 375$^{\circ}C$ for 2 hours. Austempered ductile cast iron contains a great deal of retaine austenite which contributes to an improvement of impact strength, In this paper, machinability of ADI was investigated by drilling experimentation. The results obtained are as follows: a)Flank wear increases logarithmically with the increases of cutting time. b) Relation of flank wear and cutting force can be appiled to $F_z$ = 925VB + 820 for the cutting suggested condition. c) Drilling hole number of about 2 times can be reduced more step feed than ordinary feed due to the high hardness of ADI material and hardness increasing ascribed to the martensite of retained austenite.

  • PDF