• 제목/요약/키워드: Hole transporting layer

검색결과 100건 처리시간 0.028초

DCM2와 Rubrene이 첨가된 발광층 위치에 따른 적색 OLED의 발광 특성 (Emission Characteristics of Red OLEDs in the Emitting Layer Position Doped with DCM2 and Rubrene)

  • 정행윤;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제24권8호
    • /
    • pp.664-668
    • /
    • 2011
  • In this study, we have fabricated the red OLED (organic light emitting diode). The basic device structure is ITO/hole transporting layer, TPD(500 $\AA$)/red emitting layer, Alq3 doped with DCM2:rubrene(20 $\AA$)/electron transporting layer, Alq3(M) (500 $\AA$-M $\AA$)/LiF(15 $\AA$)/Al(1,000 $\AA$). The thickness of electron transporting layer(500 $\AA$-M $\AA$) changed 0, 20, 40, 60 $\AA$. Turn on voltage of the red OLED was 5 V, 6 V, 6.5 V and 7.5 V, respectively with electron transfer layer changed ratio. Luminance of red OLED was 4,504, 1,840, 1,490 and 1,130 cd/$m^2$, respectively. Optimized electron transfer layer position changed ratio of the red OLED was 0 $\AA$.

수용성 공액고분자/그래핀 옥사이드 복합체를 이용한 유기태양전지의 정공수송층에 대한 연구 (Water-Soluble Conjugated Polymer and Graphene Oxide Composite Used as an Efficient Hole-Transporting Layer for Organic Solar Cells)

  • 김규리;오승환;김현빈;전준표;강필현
    • 폴리머
    • /
    • 제38권1호
    • /
    • pp.38-42
    • /
    • 2014
  • Poly[(9,9-bis((6'-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene)-alt-(9,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-9-fluorene)) dibromide(WPF-6-oxy-F)]와 graphene oxide(GO)를 혼합하여 WPF-6-oxy-F-GO를 제조한 후 공기 중에서 감마선을 조사하였다. WPF-6-oxy-F-GO 복합재는 유기태양전지(organic solar cells, OSCs)의 정공수송층(hole transporting layer, HTL)으로서 적용하였다. GO와 비교해 보았을 때, 조사된 WPF-6-oxy-F-GO의 면저항(sheet resistance, $R_{sheet}$)은 약 2배 정도 감소하였다. 이는 감마선 조사를 통하여 WPF-6-oxy-F와 GO 사이의 C-N 결합의 형성으로 인한 ${\pi}-{\pi}$ 공유 결합의 영향과 효율적인 packing 때문이다. 결과적으로, 조사된 WPF-6-oxy-F-GO를 정공수송층으로 적용하였을 때 유기태양전지의 효율은 6.10%까지 증가하였다. 수용성 고분자 WPF-6-oxy-F-GO는 정공수송층으로서 사용되고 있는 PEDOT:PSS를 대체하는 대안 소재로서, 높은 효율과 저가의 유기태양전지를 구현할 수 있을 것으로 기대된다.

전계발광 소자에서 정공 차단 물질로서의 4,4',4'-trifluoro-triazine의 특성 (The Characteristices of the 4,4',4'-trifluoro-triazine as a hole Blocking Material in Electroluminescent Devices)

  • 신지원;신동명;손병청
    • 한국응용과학기술학회지
    • /
    • 제17권2호
    • /
    • pp.120-125
    • /
    • 2000
  • The tfTZ(4,4',4''-trifluoro-triazine) was used as a hole blocking material for the electroluminescent devices(ELDs) in this study. In general, the holes are outnumbered the electrons in hole transport and emitting layers because the hole transport is more efficient in most organic ELDs. The hole blocking layer are expected to control the excess holes to increase the recombination of holes and electrons and to decrease current density. The former study using the 2,4,6-triphenyl-1,3,5-triazine(TTA) as hole blocking layer showed that the TTA did not form stable films with vapor deposition technique. The tfTZ can generate stable evaporated films, moreover the fluorine group can lower the highest occupied molecular orbital(HOMO) level, which produces the energy barrier for the holes. The tfTZ has high electron affinities according to the data by the Cyclic-Voltammety(CV) method, which is developed for the measurement of HOMO and lowest occupied molecular orbital(LUMO) level of organic thin films. The lowered HOMO level is made the tfTZ to be applied for a hole blocking layer in ELDs. We fabricated multilayer ELDs with a structure of ITO/hole blocking layer(HBL)/hole transporting layer(HTL)/emitting layer/electrode. The hole blocking properties of this devices is confirmed from the lowered current density values compared with that without hole blocking layer.

고신뢰성 페로브스카이트 태양전지용 무기물 기반 전하전달층 (Inorganic charge transport materials for high reliable perovskite solar cells)

  • 박소정;지수근;김진영
    • 세라미스트
    • /
    • 제23권2호
    • /
    • pp.145-165
    • /
    • 2020
  • Halide perovskites are promising photovoltaic materials due to their excellent optoelectronic properties like high absorption coefficient, low exciton binding energy and long diffusion length, and single-junction solar cells consisting of them have shown a high certified efficiency of 25.2%. Despite of high efficiency, perovskite photovoltaics show poor stability under actual operational condition, which is the mostly critical obstacle for commercialization. Given that the stability of the perovskite devices is significantly affected by charge-transporting layers, the use of inorganic charge-transporting layers with better intrinsic stability than the organic counterparts must be beneficial to the enhanced device reliability. In this review article, we summarized a number of studies on the inorganic charge-transporting layers of the perovskite solar cells, especially focusing on their effects on the enhanced device reliability.

유기 발광 소자에서 정공 주입 버퍼층의 효과 (Effects of Hole-Injection Buffer Layer in Organic Light-Emitting Diodes)

  • 정동희;김상걸;오현석;홍진웅;이준웅;김영식;김태완
    • 한국전기전자재료학회논문지
    • /
    • 제16권9호
    • /
    • pp.816-825
    • /
    • 2003
  • Current-voltage-luminance characteristics of organic light-emitting diodes (OLEDs) were measured in the temperature range of 10 K~300 K. Indium-tin-oxide (ITO) was used as an anode and aluminum as a cathode in the device. Organic of N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) was used for a hole transporting material, and tris (8-hydroxyquinolinato) aluminum (Alq$_3$) for an electron transporting material and emissive material. And copper phthalocyanine (CuPc), poly(3,4-ethylenedi oxythiophene);poly(styrenesulfonate) (PEDOT:PSS), and poly(N-vinylcarbazole) (PVK) were used for hole-injection buffer layers. From tile analysis of electroluminescence (EL) and photoluminesccnce (PL) spectra of the Alq$_3$, the EL spectrum is more greenish then that of PL. And the temperature-dependent current-voltage characteristics were analyzed in the double and multilayer structure of OLEDS. Electrical conduction mechanism was explained in the region of high-electric and low-electric field. Temperature-dependent luminous efficiency and operating voltage were analyzed from the current-voltage- luminance characteristics of the OLEDS.

Broadband Finite-Difference Time-Domain Modeling of Plasmonic Organic Photovoltaics

  • Jung, Kyung-Young;Yoon, Woo-Jun;Park, Yong Bae;Berger, Paul R.;Teixeira, Fernando L.
    • ETRI Journal
    • /
    • 제36권4호
    • /
    • pp.654-661
    • /
    • 2014
  • We develop accurate finite-difference time-domain (FDTD) modeling of polymer bulk heterojunction solar cells containing Ag nanoparticles between the hole-transporting layer and the transparent conducting oxide-coated glass substrate in the wavelength range of 300 nm to 800 nm. The Drude dispersion modeling technique is used to model the frequency dispersion behavior of Ag nanoparticles, the hole-transporting layer, and indium tin oxide. The perfectly matched layer boundary condition is used for the top and bottom regions of the computational domain, and the periodic boundary condition is used for the lateral regions of the same domain. The developed FDTD modeling is employed to investigate the effect of geometrical parameters of Ag nanospheres on electromagnetic fields in devices. Although negative plasmonic effects are observed in the considered device, absorption enhancement can be achieved when favorable geometrical parameters are obtained.

유기 발광 소자에서 정공 주입 버퍼층에 의한 전압-전류-휘도 특성 (Voltage-Current-luminance Characteristics of Organic : Light-Emitting Diodes depending on Hole-Injection Buffer Layer)

  • 정준;김탁용;고길영;이덕진;홍진웅
    • 한국컴퓨터산업교육학회:학술대회논문집
    • /
    • 한국컴퓨터산업교육학회 2003년도 제4회 종합학술대회 논문집
    • /
    • pp.49-54
    • /
    • 2003
  • In this work, we have seen the effect of hole-transporting layer in organic light-emitting diodes using N,N'-biphenyl-N,N'-bis-(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamine(TPD) and N,N'-biphenyl-N,N'-bis-(1-naphenyl)-[1,1'-biphenyl]-4,4'-diamine(NPB). NPB is regarded as a better hole trans porting material than TPD, since it has a higher glass transition temperature$(T_g)$. And current -voltage, luminance-voltage and external quantum efficiency of device were measured with the thickness variation of buffer layer using copper phathalocyanine(CuPc) and polytetrafluoroethylene (PTFE) at room temperature. We have obtained an improvement of External quantum efficiency when the CuPc 30[nm] and PTFE 1.0[nm] is used.

  • PDF

Improved Efficiency of Organic Light-Emitting Diodes with Doped Transporting Layer

  • Seo, Ji-Hyun;Park, Jung-Hyun;Kim, Jun-Ho;Seo, Ji-Hoon;Hyung, Gun-Woo;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1464-1466
    • /
    • 2007
  • We demonstrate p-doped organic light emitting diodes (OLEDs) comprising tungsten oxide ($WO_3$) and 1,4-bis[N-(1-naphthyl)-N'-phenylamino]-4,4' diamine (NPB). We propose the NPB : $WO_3$ composition functions as a p-doping layer which significantly improves hole injection that leads to the fabrication of 4-(dicyano-methylene)-2-methyl-6-(p-dimethylaminos tyryl)-4H-pyrane (DCMl) based p-doped OLEDs with high efficiency and long lifetime.

  • PDF

Nanostructuring of Semi-conducting Block Copolymers: Optimized Synthesis and Processing for Efficient Optoelectronic Devices

  • Hadziioannou, Georges
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.74-75
    • /
    • 2006
  • In organic opto-electronic applications, such as light emitting diodes (LEDs) and photovoltaic devices (PVDs), the morphology of the active layer is of crucial importance. To control the morphology of the active layer the self-assembling properties of block copolymers was used. Several rod-coil semiconducting diblock copolymers consisting of a conjugated block and a second coil block functionalized with electron transporting and/or accepting materials (such as $C_{60}$) were synthesized. The conjugated block acting as light absorbing, electron donating and hole transporting material. The donor/acceptor photovoltaic devices performance with active layer the above mentioned semiconducting block copolymers will be presented.

  • PDF

저가격 투명전극을 이용한 OLED의 제작 (Fabrication of OLED using low cost transparent conductive thin films)

  • 이붕주;신백균;유도현;지승한;이능헌;박강식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1281-1282
    • /
    • 2008
  • Low cost TCO(Transparent Conductive oxide) thin films were prepared by 3" DC/RF magnetron sputtering systems. For the AZO preparation processes a 99.99% AZO target (Zn: 98 wt.%, $Al_2O_3$: 2 wt.%) was used. In order to verify feasibility of the AZO thin films to organic light emitting device (OLED) application, test organic light emitting device was fabricated based on AZO as TCO, TPD as hole transporting layer (HTL), Alq3 as both emitting layer (EML) and electron transporting layer (ETL), and aluminium as cathode, where the both ITO and AZO surfaces were treated using $O_2$ RF plasma. The I-V characteristics of the AZO/TPD/Alq3/Al OLEDs were evaluated. As the results, the performance of the OLEDs with AZO as transparent conducting anode could be useable.

  • PDF