• 제목/요약/키워드: Hole plate

Search Result 474, Processing Time 0.031 seconds

Comparison of the Stress Concentration Factors for GFRP Plate having Centered Circular Hole by Three Resource-Conserving Methods

  • Gao, Zhongchen;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.388-394
    • /
    • 2016
  • Fiber reinforced plastic (FRP) composites have drawn increasing attentions worldwide for decades due to its outstanding properties. Stress concentration factor (SCF) as an essential parameter in materials science are critically considered in structure design and application, strength assessment and failure prediction. However, investigation of stress concentration in FRP composites has been rarely reported so far. In this study, three resource-conserving analyses (Isotropic analysis, Orthotropic analysis and Finite element analysis) were introduced to plot the $K_T^A-d/W$ curve for E-glass/epoxy composite plate with the geometrical defect of circular hole placed centrally. The plates were loaded to uniaxial direction for simplification. Finite element analysis (FEA) was carried out via ACP (ANSYS composite prepost module). Based on the least squares method, a simple expression of fitting equation could be given based on the simulated results of a set of discrete points. Finally, all three achievable solutions were presented graphically for explicit comparison. In addition, the investigation into customized efficient SCFs has also been carried out for further reference.

The Buckling Analysis of Stiffened Plate with Hole(3rd Report) -compression and shear buckling- (보강(補剛)된 유공판(有孔板)의 좌굴강도해석(挫屈强度解析)(제3보)(第3報) -압축(壓縮) 및 전단좌굴(剪斷挫屈))

  • Chang-Doo,Jang;Seung-Soo,Na
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.9-20
    • /
    • 1985
  • Generally the stiffened plate in the ship structure is subjected to not only axial load but shear load. With respect to those combined loads buckling analysis in necessary. In this paper, buckling strength is analyzed by using Finite Element Method when the stiffened plate with hole is under loading conditions mentioned above. To obtain the higher buckling strength, we need some reinforcement. The methods of reinforcement are attaching doubler around hole and stiffeners in the arbitrary directions For the sake of convenience those arbitrary directions were selected paralleled($0^{\circ}C$), vertical($90^{\circ}C$)and oblique($45^{\circ}C$) to the edge. Two kinds of method mentioned above are investigated, it is clarified that which of the two is more effective reinforcement. From the viewpoint of buckling strength, following conclusions were obtained. When external load direction is unknown, doubler reinforcement is more effective than those of parallel and vertical stiffener. And oblique stiffener reinforcement is more effective than that of doubler when external load direction is know.

  • PDF

Closed-form solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using super-elastic SMA stitches

  • Soltanieh, Ghazaleh;Yam, Michael CH.;Zhang, Jing-Zhou;Ke, Ke
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.39-50
    • /
    • 2022
  • Layer separation (delamination) is an essential threat to fiber-reinforced polymer (FRP) plates under dynamic, static, and fatigue loads. Under compressive load, the growth of delamination will lead to structural instability. The aim of this paper is to present a method using shape memory alloy (SMA) stitches to suppress the delamination growth in a FRP plate and to improve the buckling behavior of the plate with a rectangular hole. The present paper is divided into two parts. Firstly, a closed-form (CF) formulation for evaluating the buckling load of the FRP plate is presented. Secondly, the finite element method (FEM) will be employed to calculate the buckling loads of the plates which serves to validate the results obtained from the closed-form method. The novelty of this work is the development of the closed-form solution using the p-Ritz energy approach regarding the stress-dependent phase transformation of SMA to trace the equilibrium path. For the FEM, the Lagoudas constitutive model of the SMA material is implemented in FORTRAN programming language using a user material subroutines (VUMAT). The model is simulated in ABAQUS/Explicit solver due to the nature of the loading type. The cohesive zone model (CZM) is applied to simulate the delamination growth.

The Distribution of Boundaty Stresses around the Lightening Hole in a Triangular Bracket. (Bracket의 Lightening Hole 주변(周邊)에서의 응력분포(應力分布))

  • Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.3 no.1
    • /
    • pp.11-18
    • /
    • 1966
  • In a polarized light field, triangular plate bracket specimen of CR-39 with lightening hole were subjected to tension. The variables of the models used in the experiment were taken in the range of length-depth $ratio=0.583{\sim}1.715$, eccentricity of lightening hole from the geometrical center of $bracket=-1/4"{\sim}+1/4"$, and the lightening hole $diameter=1/2"{\sim}2"$. The isoclinics were drawn and from those the stress trajectories were constructed. Then the distributions of boundary stress around the lightening holes were determined from the isochromatic fringe pattern. The conclusions reached in this investigation are as follows: 1. Maximum stresses of the hole boundary are gradually increased when the diameter of the lightning hole increase. 2. Maximum stresses of the lightning hole boundary are decreased gradually when the eccentricity of the lightning hole from the geometrical center of the bracket to the farther side from the free end. 3. If the minimum distances from the free end of the brackets to the lightening hole boundaries are equal, the variation of the maximum stresses are in a small range for the change of lightening hole diameter and its location. 4. When the length-depth ratios are smaller than 0.8, the maximum stresses increase steeply. In the range of $0.8{\sim}1.2$ maximum stresses increase gradually and thereafter increase rapidly when the length-depth ratio of the bracket increase for the same diameter of a lightening hole.

  • PDF

Development of Hole Inspection Program using Touch Trigger Probe on CNC Machine Tools (CNC 공작기계 상에서 접촉식 측정 프로브를 이용한 홀 측정 프로그램 개발)

  • Lee, Chan-Ho;Lee, Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.195-201
    • /
    • 2012
  • According to many customers' requests, optical measurement module (OMM) applications using automatic measuring devices to measure the machined part rapidly on a machine tool have increased steeply. Touch trigger probes are being used for job setup and feature inspection as automatic measuring devices, and this makes quality checking and machining compensation possible. Therefore, in this study, the use of touch trigger probes for accurate measurement of the machined part has been studied and a macro program for a hole measuring cycle has been developed. This hole is the most common feature to be measured, but conventional methods are still not free from measuring error. In addition, the eccentricity change of the least square circle was simulated according to the roundness error in a hole measurement. To evaluate the reliability of this study, the developed hole-measuring program was executed to measure the hole plate on the machine and verify the roundness error in the eccentricity simulation result.

EFFECT OF WELDING SEQUENCE ON THE RESIDUAL STRESSES OF PLATE WITH LONGITUDINAL STIFFENERS

  • Kim, Namin;Lee, Jeongsoo;Woohyeon Choe
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.657-660
    • /
    • 2002
  • In this paper, a study on the residual stress of plate with longitudinal stiffeners is explained in terms of the welding sequences. In order to verify the results of numerical analysis, the hole drilling method (HDM) is performed, to measuring the residual stresses of the test plates in $CO_2$ Flux Cored Arc Welding (FCAW) under various welding conditions. The non-linear transient analysis technique for the numerical analysis in a large and complicate structure is considered. The residual stress of plate in consideration of the welding sequences and directions is evaluated by some numerical simulations and also by experiments. Comparison of numerical analysis results with experimental data shows the accuracy and validity of the proposed method.

  • PDF

The effect of the flow on the absorption performance of a perforated plate system (다공판 시스템의 흡음성능에 유동이 미치는 영향)

  • 허성욱;제현수;양수영;이동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.879-884
    • /
    • 2003
  • This paper is to experimentally investigate the effect of the through-flow and grazing-flow on the absorption performance of a perforated plate system. The experiment is performed through the systematic change of the through-flow velocity, grazing-flow velocity, incident sound pressure level, and the geometrical parameters such as the porosity and hole diameter. From the experimental results, it is found that for the nonlinear relationship between the acoustic resistance and incident sound pressure level there is no influence of the through-flow on the absorption performance, but fur the linear relationship between them there is a strong dependence of the absorption performance on the through-flow velocity. It is also shown that the absorption performance is controllable by changing the porosity and hole-diameter in size.

  • PDF

Effect of the through-flow on the absorption performance of a perforated plate system (다공판 시스템의 흡음성능에 관통유동이 미치는 효과)

  • 허성욱;이동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.163-167
    • /
    • 2003
  • This paper is to experimentally investigate the effect of the through-flow on the absorption performance of a perforated plate system. The experiment is performed through the systematic change of the through-flow velocity, incident sound pressure level, and the geometrical parameters such as the porosity and hole diameter. From the experimental results, it is found that fur the nonlinear relationship between the acoustic resistance and incident sound pressure level there is no influence of the through-flow on the absorption performance, but for the linear relationship between them there is a strong dependence of the absorption performance on the through-flow velocity. It is also shown that the absorption performance is controllable by changing the porosity and hole-diameter in size.

  • PDF

Effect of Welding Sequence on the Residual Stresses of Plate with Longitudinal Stiffeners

  • Kim, N.I.;Lee, J.S.;Choe, W.H.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.10-14
    • /
    • 2004
  • In this paper, a study on the residual stress of plate with longitudinal stiffeners is explained in terms of the welding sequences. In order to verify the results of numerical analysis, the hole drilling method (HDM) is performed, to measuring the residual stresses of the test plates in $CO_2$ Flux Cored Arc Welding (FCAW) under various welding conditions. The non-linear transient analysis technique for the numerical analysis in a large and complicate structure is considered. The residual stress of plate in consideration of the welding sequences and directions is evaluated by some numerical simulations and also by experiments. Comparison of numerical analysis results with experimental data shows the accuracy and validity of the proposed method.

  • PDF

Aluminum and E-glass epoxy plates behavior subjected to shock loading

  • Muhit, Imrose B.;Sakib, Mostofa N.;Ahmed, Sheikh S.
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.155-168
    • /
    • 2017
  • The terrorist attacks and dangers by bomb blast have turned into an emerging issue throughout the world and the protection of the people and structures against terrorist acts depends on the prediction of the response of structures under blast and shock load. In this paper, behavior of aluminum and unidirectionally reinforced E-Glass Epoxy composite plates with and without focal circular holes subjected to shock loading has been identified. For isotropic and orthotropic plates (with and without holes) the classical normal mode approach has been utilized as a part of the processing of theoretical results. To obtain the accurate results, convergence of the results was considered and a number of modes were selected for plate with and without hole individually. Using a shock tube as a loading device, tests have been conducted to composite plates to verify the theoretical results. Moreover, peak dynamic strains, investigated by experiments are also compared with the theoretical values and deviation of the results are discussed accordingly. The strain-time histories are likewise indicated for a specific gauge area for aluminum and composite plates. Comparison of dynamic-amplification factors between the isotropic and the orthotropic plates with and without hole has been discussed.