• Title/Summary/Keyword: Hole pattern

Search Result 311, Processing Time 0.031 seconds

Design guide for full-face blasting in highway tunnel (고속도로 터널에 대한 전단면 발파 설계방안 연구)

  • Lee, Sang-Don;Choi, Hae-Moon;Lee, Hyun-Koo;Ryu, Chang-Ha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.930-937
    • /
    • 2004
  • In tunnel blasting, rock damage and overbreak at excavation limits are strongly related to stability of the tunnel and cost for rock support, and also affect to maintenance after tunnel construction. In this study, many field tests and measurements have been carried out in highway tunnels so that discordance between blast design and practical production blasting could be settled and actual methods of over break control could be proposed through the understanding of the problems in existing blasting patterns. Test blasting in tunnel was carried out many times in two tunnel sites. Also, long hole blasting longer than existing blasting pattern was executed for good grade of rock mass whose RMR value is more than 60. Using the results of test blasting, new standard blasting patterns for two lane tunnel were proposed. As a result of profile measurement after blasting, drilling is a major factor of overbreak. And then the methods for minimizing overbreak were adapted in new blasting patterns.

  • PDF

Acoustic Emission Source Classification of Finite-width Plate with a Circular Hole Defect using k-Nearest Neighbor Algorithm (k-최근접 이웃 알고리즘을 이용한 원공결함을 갖는 유한 폭 판재의 음향방출 음원분류에 대한 연구)

  • Rhee, Zhang-Kyu;Oh, Jin-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • A study of fracture to material is getting interest in nuclear and aerospace industry as a viewpoint of safety. Acoustic emission (AE) is a non-destructive testing and new technology to evaluate safety on structures. In previous research continuously, all tensile tests on the pre-defected coupons were performed using the universal testing machine, which machine crosshead was move at a constant speed of 5mm/min. This study is to evaluate an AE source characterization of SM45C steel by using k-nearest neighbor classifier, k-NNC. For this, we used K-means clustering as an unsupervised learning method for obtained multi -variate AE main data sets, and we applied k-NNC as a supervised learning pattern recognition algorithm for obtained multi-variate AE working data sets. As a result, the criteria of Wilk's $\lambda$, D&B(Rij) & Tou are discussed.

Optimal Determination of the Fabrication Parameters in Focused Ion Beam for Milling Gold Nano Hole Array (금 나노홀 어레이 제작을 위한 집속 이온빔의 공정 최적화)

  • Cho, Eun Byurl;Kwon, Hee Min;Lee, Hee Sun;Yeo, Jong-Souk
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.262-269
    • /
    • 2013
  • Though focused ion beam (FIB) is one of the candidates to fabricate the nanoscale patterns, precision milling of nanoscale structures is not straightforward. Thus this poses challenges for novice FIB users. Optimal determination in FIB parameters is a crucial step to fabricate a desired nanoscale pattern. There are two main FIB parameters to consider, beam current (beam size) and dose (beam duration) for optimizing the milling condition. After fixing the dose, the proper beam current can be chosen considering both total milling time and resolution of the pattern. Then, using the chosen beam current, the metal nano hole structure can be perforated to the required depth by varying the dose. In this experiment, we found the adequate condition of $0.1nC/{\mu}m^2$ dose at 1 pA Ga ion beam current for 100 nm thickness perforation. With this condition, we perforated the periodic square array of elliptical nano holes.

Robust Design for Showerhead Thermal Deformation

  • Gong, Dae-Wi;Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.150.1-150.1
    • /
    • 2014
  • Showerhead is used as a main part in the semiconductor equipment. The face plate flatness should remain constant and the cleaning performance must be gained to keep the uniformity level of etching or deposition in chemical vapor deposition process. High operating temperature or long period of thermal loading could lead the showerhead to be deformed thermally. In some case, the thermal deformation appears very sensitive to showerhead performance. This paper describes the methods for robust design using computational fluid dynamics. To reveal the influence of the post distribution on flow pattern in the showerhead cavity, numerical simulation was performed for several post distributions. The flow structure appears similar to an impinging flow near a centered baffle in showerhead cavity. We took the structure as an index to estimate diffusion path. A robust design to reduce the thermal deformation of showerhead can be achieved using post number increase without ill effect on flow. To prevent the showerhead deformation by heat loading, its face plate thickness was determined additionally using numerical simulation. The face plate has thousands of impinging holes. The design key is to keep pressure drop distribution on the showerhead face plate with the holes. This study reads the methodology to apply to a showerhead hole design. A Hagen-Poiseuille equation gives the pressure drop in a fluid flowing through such hole. The assumptions of the equation are the fluid is viscous-incompressible and the flow is laminar fully developed in a through hole. An equation can be expressed with radius R and length L related to the volume flow rate Q from the Hagen-Poiseuille equation, $Q={\pi}R4{\Delta}p/8{\mu}L$, where ${\mu}$ is the viscosity and ${\Delta}p$ is the pressure drop. In present case, each hole has steps at both the inlet and the outlet, and the fluid appears compressible. So we simplify the equation as $Q=C(R,L){\Delta}p$. A series of performance curves for a through hole with geometric parameters were obtained using two-dimensional numerical simulation. We obtained a relation between the hole diameter and hole length from the test cases to determine hole diameter at fixed hole length. A numerical simulation has been performed as a tool for enhancing showerhead robust design from flow structure. Geometric parameters for the design were post distribution and face plate thickness. The reinforced showerhead has been installed and its effective deposition profile is being shown in factory.

  • PDF

Numerical Analysis of the Effect of Hole Size Change in Lower-Support-Structure-Bottom Plate on the Reactor Core-Inlet Flow-Distribution (하부지지구조물 바닥판 구멍크기 변경이 원자로 노심 입구 유량분포에 미치는 영향에 관한 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Cheong, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.905-911
    • /
    • 2015
  • In this study, to examine the effect of a hole size change(smaller hole diameter) in the outer region of the lower-support-structure-bottom plate(LSSBP) on the reactor core-inlet flow-distribution, simulations were conducted with the commercial CFD software, ANSYS CFX R.15. The predicted results were compared with those of the original LSSBP. Through these comparisons, it was concluded that a more uniform distribution of the mass flow rate at the core-inlet plane could be obtained by reducing the hole size in the outer region of the LSSBP. Therefore, from the nuclear regulatory perspective, design change of the hole pattern in the outer region of the LSSBP may be desirable in terms of improving both the mechanical integrity of the fuel assembly and the core thermal margin.

Compressive Strength Prediction of Composite Laminates Containing Circular Holes (원공이 있는 복합재 적층판의 압축강도 예측)

  • Kim, Sung Joon;Park, Sehoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.549-555
    • /
    • 2021
  • Open hole strength of composite laminates is often used as the design allowable strength for designing composite aircraft structures, particularly those structures subjected to impact loading. Generally, the degradation of strength due to a barely visible impact damage (BVID) is assumed as the strength of 6.0 mm hole diameter in 24.0 mm width specimen. In this study, the residual strength static tests of composite laminates containing circular holes have been performed to investigate the effects of fiber orientation structure on open hole strength. The point stress criterion using a characteristic length is used to predict the open hole strength. The finite element analysis has been used to validate the analytical method. From the test results, it is shown that the characteristic length is related to the percentage of 0°, ±45° and 90° plies of the laminate. And regression analysis has performed to determine the characteristic length and strength of no hole specimens on the arbitrary layup pattern.

Flexural performance of composite sandwich wall panels with foamed concrete

  • Lei Li;Wei Huang;Zhengyi Kong;Li Zhang;Youde Wang;Quang-Viet Vu
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.391-403
    • /
    • 2024
  • The flexural behavior of composite sandwich wall panels with different thicknesses, numbers of holes, and hole forms, and arrangement form of longitudinal steel bar (uniform type and concealed-beam type) are investigated. A total of twelve composite sandwich wall panels are prepared, utilizing modified polystyrene particles mixed with foam concrete for the flexural performance test. The failure pattern of the composite sandwich wall panels is influenced by the extruded polystyrene panel (XPS) panel thickness and the reinforcement ratio in combination, resulting in both flexural and shear failure modes. Increasing the XPS panel thickness causes the specimens to transition from flexural failure to shear failure. An increase in the reinforcement ratio leads to the transition from flexural failure to shear failure. The hole form on the XPS panel and the steel bar arrangement form affect the loading behavior of the specimens. Plum-arrangement hole form specimens exhibit lower steel bar strain and deflection compared to linear-arrangement hole form specimens. Additionally, specimens with concealed beam-type steel bar display lower steel bar strain and deflection than uniform-type steel bar specimens. However, the hole form and steel bar arrangement form have a limited impact on the ultimate load. Theoretical formulas for cracking load are provided for both fully composite and non-composite states. When compared to the experimental values, it is observed that the cracking load of the specimens with XPS panels closely matches the calculations for the non-composite state. An accurate prediction model for the ultimate load of fully composite wall panels is developed. These findings offer valuable insights into the behavior of composite sandwich wall panels and provide a basis for predicting their performance under various design factors and conditions.

Comparison of Torso Pattern Made by Draping and Flat Pattern Method - Based on the Comparison between 75A and 75D according to the Size of Breast - (입체 재단과 평면 재단 방식의 토루소 원형 비교 - 유방 크기 75A와 75D를 중심으로 -)

  • Yoon, Ji-Hyun;Park, Kil-Soon
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.5
    • /
    • pp.892-907
    • /
    • 2010
  • The purpose of this study was to compare torso pattern made by draping and flat pattern method in terms of the size of breast. The size of this study was classified as 75A and 75D according to the size of breast. Each torso pattern by the combination of the size and pattern method was compared and analyzed. In order to test the fit of the draping and flat pattern that was developed according to the size of breast, the outer appearance was evaluated. The results of the study were as follows: First, The most striking size difference was difference between the front and the back on bust line level, which decides on position of the side seam in comparison of size between draping and flat pattern of 75A and 75D. In the flat pattern, the difference between the front and the back in the size of breast was consistent regardless of a change in the size of breast. However, in the draping, the bigger breast led to the bigger difference between the front and the back on bustline level. Second, the flat pattern in 75D was evaluated to be the worst in 27 items among total 46 items for the evaluation of outer appearance in the draping and flat pattern of 75A and 75D. Third, regardless of size, the draping was evaluated to be more suitable in the areas related to neck, arm hole, and waist dart than the flat pattern. These results are suggesting that the draping is a method of reflecting characteristic of the body type more accurately than the flat pattern, and that the draping is a more suitable method than the flat pattern for the design of clothing pattern of the body type with big breast like 75D.

Performance Test of A Reverse-Annular Type Combustor (TS2) for APU (보조동력장치용 환형 역류형 연소기 (TS2) 성능 시험)

  • Ko, Young-Sung;Han, Yeoung-Min;Yang, Soo-Seok;Lee, Dae-Sung;Yun, Sang-Sig;Choi, Sung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.840-845
    • /
    • 2001
  • Development of a small gas-turbine combustor for 100kW class APU(Auxiliary Power Unit) has been performed. This combustor is a reverse-annular type and has a tangential swirler in the liner head to improve the fuel/air mixing and flame stability. Three main and three pilot fuel injectors of the simplex pressure-swirl type are used. The performance target at the design condition includes a turbine inlet temperature of 1170K, a combustion efficiency of 99%, a pattern factor of 30%, and an engine durability of 3000 hours. Under developing the combustor, we conducted performance test of our first prototype(TS1) with some variants. As a result of the test, the performance targets of the combustor are satisfied except that the pattern factor is about 4% higher than target value. So, we redesigned the second prototype(TS2) and conduct performance test with the critical focus on pattern factor and exit mean temperature. We adopted TS2 four variant to check the improvement of pattern factor. As the result, the pattern factors of several variants were satisfied with the performance target. Finally, We chose the TS2A variant as a final combustor for our APU model.

  • PDF

Effect of Coolant Flow Pattern on Metal Temperature of Combustion Chamber (엔진 내 냉각수 유동형태가 연소실 벽면온도에 미치는 영향에 관한 연구)

  • 민병순;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.14-21
    • /
    • 1993
  • The effect of coolant flow pattern on the metal temperature of the combustion chamber was studied in 1.5L and 1.8L gasoline engines. One of the main important points in the design of the water jacket is the increase of the coolant flow velocity. In this paper, the water jackets of the cylinder head and the cylinder block were visualized for the purpose of improving the coolant flow pattern. By the use of this technique, the optimal design of the size and th location of the water transfer fole was possible. And, to lower the metal temperatures of the thermally critical parts, the drilled water passages were employed. To investigate of effect of the improved flow pattern and the drilled water passages, the metal temperatures of the combustion chamber were measured. As a result of the temperature measurement, it was found out that both the change of flow pattern and the drilled water passages have significant effect on the reduction of the peak metal temperature.

  • PDF