• Title/Summary/Keyword: Hole effect

Search Result 1,246, Processing Time 0.03 seconds

A Study on a Perforated Breakwater (유공방파제에 대한 연구)

  • Lee, Yong-Gyu;Pyeon, Jong-Geun;An, Su-Han
    • Water for future
    • /
    • v.19 no.2
    • /
    • pp.131-138
    • /
    • 1986
  • Both hydraulic and dynamic characteristics of a single perforated wall are studied theoretically and experimentally. Theoretically, the effect of evanescent modes on wave force acting on a single perated wall is studied by use of the Horiguchi theory. The wave force on the perforated wall is presented to be insensitive to evanescent modes. According to experimental study, The larger perforation ratio(${\gamma}$) grows, the weaker the wave force on the wall becomes sensitively. And in the small value of l/D (ratio of wall thickness(l) to hole diameter(D)) where the holes on the wall are regarded as orifice, the wave force on the wall is insensitive to the variation of l/D. Energy loss coefficient f is estimated at 1.0 in this small value of l/D by use of Horiguchi theory. But in the large value of l/D where the holes are regarded as pipe, the wave force on the wall is relatively sensitive to the variation of l/D and f is estimated at 1.5 by use of Horiguchi theory.

  • PDF

Electrical and Optical Properties of P-type Amorphous Oxide Semiconductor Mg:$ZnCo_2O_4$ Thin-Film

  • Lee, Chil-Hyoung;Choi, Won-Kook;Lee, Jeon-Kook;Choi, Doo-Jin;Oh, Young-Jei
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.87-87
    • /
    • 2011
  • Oxide semiconductors are attractive materials for thin-film electronics and optoelectronics due to compatibility with synthesis on large-area, glass and flexible substrate. However, development of thin-film electronics has been hampered by the limited number of semiconducting oxides that are p-type. We report on the effect of the oxygen partial pressure ratio in the gas mixture on the electrical and optical properties of spinel Mg:$ZnCo_2O_4$ thin films deposited at room temperature using RF sputtering, that exhibit p-type conduction. The thin-films are deposited at room temperature in a background of oxygen using a polycrystalline Mg:$ZnCo_2O_4$ ablation target. The p-type conduction is confirmed by positive Seebeck coefficient and positive Hall coefficient. The electrical resistivity and carrier concentration in on dependent Mg:$ZnCo_2O_4$ thin films were found to be dependent on the oxygen partial pressure ratio. As a result, it is revealed that the Mg:$ZnCo_2O_4$ thin-films were greatly influenced on the electrical and optical properties by the oxygen partial pressure condition. The visible region of the spectrum of 36~85%, and hole mobility of 1.1~3.7 $cm^2$/Vs, were obtained.

  • PDF

Study on Efficiency Droop in a-plane InGaN/GaN Light Emitting Diodes

  • Song, Hoo-Young;Suh, Joo-Young;Kim, Eun-Kyu;Baik, Kwang-Hyeon;Hwang, Sung-Min;Yun, Joo-Sun;Shim, Jong-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.145-145
    • /
    • 2011
  • Light-emitting diodes (LEDs) based on III-nitrides compound semiconductors have achieved a high performance device available for display and illumination sector. However, the conventional c-plane oriented LED structures are still showing several problems given by the quantum confined Stark effect (QCSE) due to the effects of strong piezoelectric and spontaneous polarizations. The QCSE results in spatial separation of electron and hole wavefunctions in quantum wells, thereby decreasing the internal quantum efficiency and red-shifting the emission wavelength. Due to demands for improvement of device performance, nonpolar structure has been attracting attentions, since the quantum wells grown on nonpolar templates are free from the QCSE. However, current device performance for nonpolar LEDs is still lower than those for conventional LEDs. In this study, we discuss the potential possibilities of nonpolar LEDs for commercialization. In this study, we characterized current-light output power relation of the a-plane InGaN/GaN LEDs structures with the variation of quantum well structures. On-wafer electroluminescence measurements were performed with short pulse (10 us) and low duty factor (1 %) conditions applied for eliminating thermal effects. The well and barrier widths, and indium compositions in quantum well structures were changed to analyze the efficiency droop phenomenon.

  • PDF

Design of an Electron Ohmic-Contact to Improve the Balanced Charge Injection in OLEDs

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.283-283
    • /
    • 2011
  • The n-doping effect by doping metal carbonate into an electron-injecting organic layer can improve the device performance by the balanced carrier injection because an electron ohmic contact between cathode and an electron-transporting layer, for example, a high current density, a high efficiency, a high luminance, and a low power consumption. In the study, first, we investigated an electron-ohmic property of electron-only device, which has a ITO/$Rb_2CO_3$-doped $C_{60}$/Al structure. Second, we examined the I-V-L characteristics of all-ohmic OLEDs, which are glass/ITO/$MoO_x$-doped NPB (25%, 5 nm)/NPB (63 nm)/$Alq_3$ (32 nm)/$Rb_2CO_3$-doped $C_{60}$(y%, 10 nm)/Al. The $MoO_x$doped NPB and $Rb_2CO_3$-doped fullerene layer were used as the hole-ohmic contact and electron-ohmic contact layer in all-ohmic OLEDs, respectively, Third, the electronic structure of the $Rb_2CO_3$-doped $C_{60}$-doped interfaces were investigated by analyzing photoemission properties, such as x-ray photoemission spectroscopy (XPS), Ultraviolet Photoemission spectroscopy (UPS), and Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, as a doping concentration at the interfaces of $Rb_2CO_3$-doped fullerene are changed. Finally, the correlation between the device performance in all ohmic devices and the interfacial property of the $Rb_2CO_3$-doped $C_{60}$ thin film was discussed with an energy band diagram.

  • PDF

Thickness Effect of ZnO Electron Transport Layers in Inverted Organic Solar Cells

  • Jang, Woong-Joo;Cho, Hyung-Koun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.377-377
    • /
    • 2011
  • Organic solar cells (OSCs) with low cost have been studied to apply on flexible substrate by solution process in low temperature [1]. In previous researches, conventional organic solar cell was composed of metal oxide anode, buffer layer such as PEDOT:PSS, photoactive layer, and metal cathode with low work function. In this structure, indium tin oxide (ITO) and Al was generally used as metal oxide anode and metal cathode, respectively. However, they showed poor reliability, because PEDOT:PSS was sensitive to moisture and air, and the low work function metal cathode was easily oxidized to air, resulting in decreased efficiency in half per day [2]. Inverted organic solar cells (IOSCs) using high work function metal and buffer layer replacing the PEDOT:PSS have focused as a solution in conventional organic solar cell. On the contrary to conventional OSCs, ZnO and TiO2 are required to be used as a buffer layer, since the ITO in IOSC is used as cathode to collect electrons and block holes. The ZnO is expected to be excellent electron transport layer (ETL), because the ZnO has the advantages of high electron mobility, stability in air, easy fabrication at room temperature, and UV absorption. In this study, the IOSCs based on poly [N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) : [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) were fabricated with the ZnO electron-transport layer and MoO3 hole-transport layer. Thickness of the ZnO for electron-transport layer was controlled by rotation speed in spin-coating. The PCDTBT and PC70BM were mixed with a ratio of 1:2 as an active layer. As a result, the highest efficiency of 2.53% was achieved.

  • PDF

A Experimental Study on the Performance of Climate Control Seats Using the Discharge Port of the Shape of Nozzle (노즐 형태의 토출구를 이용한 냉난방 시트 성능에 관한 실험적 연구)

  • Jung, Jung-Hoon;Kim, Sung-Chul;Won, Jong-Phil;Noh, Sang-Ho;Cho, Yong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.110-116
    • /
    • 2009
  • Research for climate control seats is being vigorously pursued because requests for passenger's thermal comfort are increasing. Recently, thermoelectric devices have been applied to automotive seats for both cooling and heating operations. The climate control seats using thermoelectric devices can rapidly control the air temperature passing through the devices and directly affect the thermal comfort of passengers. The performance characteristics of the climate control seats were analyzed by experiments for two different types of a leather covered seat and a mesh applied seat. Experimental results show that the cooling and heating performance for the mesh applied seat by using the discharge port of the shape of nozzle was improved significantly in comparison with that for the leather covered seat. The variation of temperature between the inlet air and the outlet air of the climate control seat for the enhanced mesh applied type was by $-3.5^{\circ}C$ at cooling mode, and was by $15.0^{\circ}C$ at heating mode, after about 30 minutes, respectively. Also, it is possible to provide rapid thermal comfort to passengers sitting on the seat in the vehicle cabin by using the proposed climate control seat.

Effect of flagpole attached to buoy on tension of buoy rope of gillnet (자망어구 부이의 깃대가 부이줄 장력에 미치는 영향)

  • CHO, Sam-Kwang;LEE, Gun-Ho;CHA, Bong-Jin;JUNG, Seong-Jae;KIM, In-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.4
    • /
    • pp.290-298
    • /
    • 2016
  • This study aims to reduce the force exerted to the buoy of the gillnet by wave and current. Five buoy models were selected for experiments and their rope tensions under wave and current action were compared. Five models were EL (ellipsoid), EL-H (ellipsoid-hole), SL (streamlined body), SP (sphere) and CL (cylinder, traditional type). In the first experiment, the Five models were tested without any attachment. In the second experiment, a flagpole was attached to each model. As a result, in the condition without flagpole, the tensions of four models with the exception of the CL were about a half of that of the CL. In the condition with flagpole, the tension of all models was twice larger than that without flagpole. Thus, a new model was suggested to improve the problem, which has a combined body that of a flagpole and a buoy Three new models of CL-L (long and thin cylinder), LF (leaf shape) and LF-F (leaf shape with fin) were designed. Also a cylinder type (CLD) with a flagpole as a control was included in the experiment. As a result, the LF-F had the smallest tension and a half tension of the CLD. Therefore, it is supposed that the flagpole and buoy combined model could reduce the tension on buoy rope and contribute to improve the gillnet loss problem.

Study of Robust Design of a Off-road Diesel Engine considering Emission characteristics of NOx and PM (NOx와 PM 배출물 특성을 고려한 오프로드 디젤 엔진의 강건 설계에 관한 연구)

  • Chung, Jin-Eun;Ahn, Jueng-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4729-4735
    • /
    • 2014
  • To protect the environment, the regulation of emissions from off-road engines which are relatively neglected, is being reinforced. This paper deals with the robust design of off-road diesel engines considering the emission characteristics. Measurements of the NOx and PM levels based on the DOE were carried out. The injector hole number, injection timing and EGR rate were selected as the control factors. The orthogonal arrays table $L_9(3^3)$ was made from 2 or 3 levels for each factor and measurements of emissions were accomplished based on the table. The small-the-better SN ratio according to the Taguchi method was evaluated. The ANOVA (analysis of variance) for the SN ratio was conducted. The injection timing on the NOx emissions and the EGR rate on the PM have the largest effect on the low-load operation condition. The confidence levels of the control factors were more than 90%.

A comparison study on coupled thermal, hydraulic, and mechanical interactions associated with an underground radwaste repository within a faulted granitic rock mass (화강암반내 단층지역에 위한 지하 방사성폐기물 처분장 인접지역에서의 열-수리-역학적 연성거동 비교 연구)

  • 김진웅;배대석;강철형
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.255-267
    • /
    • 2001
  • A comparison study is performed to understand the coupling behavior of the thermal, hydraulic, and mechanical interactions in the vicinity of an underground radwaste repository, assumed to be located at a depth of 500 m, within a granitic rock mass with a 58$^{\circ}$ dipping fault passing through the roof-wall intersection of the repository cavern. The two dimensional universal distinct element code, UDEC is used for the analysis. The model includes a granitic rock meas, a canister with PWR spent fuels surrounded by the compacted bentonite inside a deposition hole, and the mixed bentonite backfilled in the rest of the space within a repository cavern. The coupling behavior of hydromechanical, thermomechanical, and thermohydromechanical interaction has been studied and compared. The effect of the time-dependent decaying heat, from the radioactive materials in PWR spent fuels, on the repository and its surroundings has been studied. A steady state flow algorithm is used for the hydraulic analysis.

  • PDF

Electro-optical properties of organic thin film EL device using PPV (PPV를 이용한 유기 박막 EL 소자의 전기-광학적특성)

  • Kim, Min-Soo;Park, Lee-Soon;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.97-102
    • /
    • 1998
  • Organic thin film EL devices using PPV(poly (p-phenylenevinylene)) as emitter were fabricated on various conditions and structures, their electro-optical properties were estimated. Fabricated EL devices had structures of single layer(ITO(indium tin oxide)/PPV/Mg), double layer(ITO/PVK(poly(N-vinylcarbazole))/PPV/Mg and ITO/PPV/Polymer matrix + PBD/Mg) and three layer (ITO/PVK/PPV/PS(polystyrene)+PBD(butyl-2-(4-bipheny])-5-(4-tert-butylphenyl-1,3,4-oxadiazole))/Mg), their electro-optical characteristics were compared with each other. In structure of double layer (ITO/PPV /Polymer matrix + PBD/Mg), the used polymer-matrices were PMMA(poly(methyl methacrylate), PC(polycarbonate), PS and MCH(side chain liquid crystalline homopolymer). When PS as a hole transport layer was used, the luminance characteristics on concentration of PBD was obtained. In results, current-voltage-luminance curves of fabricated devices had characteristics of tunneling effect and the device showed a stable light emitting.

  • PDF