• Title/Summary/Keyword: Hole density

Search Result 442, Processing Time 0.028 seconds

A study on slim-hole density logging based on numerical simulation (소구경 시추공에서의 밀도검층 수치모델링 연구)

  • Ku, Bonjin;Nam, Myung Jin;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.227-234
    • /
    • 2012
  • In this study, we make simulation of density log using a Monte Carlo N-Particle (MCNP) algorithm to make an analysis on density logging under different borehole environments, since density logging is affected by various borehole conditions like borehole size, density of borehole fluid, thickness and type of casing, and so on. MCNP algorithm has been widely used for simulation of problems of nuclear particle transportation. In the simulation, we consider the specific configuration of a tool (Robertson Geologging Co. Ltd) that Korea institute of geoscience and mineral resources (KIGAM) has used. In order to measure accurate bulk density of a formation, it is essential to make a calibration and correction chart for the tool under considerations. Through numerical simulation, this study makes calibration plot of the density tool in material with several known bulk densities and with boreholes of several different diameters. In order to make correction charts for the density logging, we simulate and analyze measurements of density logging under different borehole conditions by considering borehole size, density of borehole fluid, and presence of casing.

Effect of Current Density on Nickel Surface Treatment Process (니켈 표면처리공정에서 전류밀도 효과분석)

  • Kim, Yong-Woon;Joeng, Koo-Hyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.228-235
    • /
    • 2008
  • Nickel plating thickness increased with the electric current density, and the augmentation was more thick in $6{\sim}10A/dm^2$ than low current. Hull-cell analysis was tested to evaluate the current density. Optimum thickness was obtained at a temperature of $60^{\circ}C$, and the pH fluctuation of 3.5~4.0. Over the Nickel ion concentration of 300 g/L, plating thickness increased with the current density. The rate of decrease in nickel ion concentration was increased with the current density. The quantity of plating electro-deposition was increased at the anode surface, which was correlated with the increase of plating thickness. The plating thickness was increased because of the quick plating speed. However, the condition of the plating surface becomes irregular and the minuteness of nickel plating layer was reduced with the plating rate. After the corrosion test of 25 h, it was resulted in that maintaining low electric current density is desirable for the excellent corrosion resistance in lustered nickel plating. According to the program simulation, the thickness of diffusion layer was increased and the concentration of anode surface was lowered for the higher current densities. The concentration profile showed the regular distribution at low electric current density. The field plating process was controlled by the electric current density and the plating thickness instead of plating time for the productivity. The surface physical property of plating structure or corrosion resistance was excellent in the case of low electric current density.

Response characterization of slim-hole density sonde using Monte Carlo method (Monte Carlo 방법을 이용한 소구경용 밀도 존데의 반응 특성)

  • Won, Byeongho;Hwang, Seho;Shin, Jehyun;Park, Chang Je;Kim, Jongman;Hamm, Se-Yeong
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.155-162
    • /
    • 2014
  • We performed MCNP modeling for density log, and examined its reliability and validity comparing the correction curves from physical borehole model. Based on the constructed numerical model, numerical modelings of density sonde in three-inch borehole were carried out under the various conditions such as the existence and type of casing or fluid, and also the stand-off between the sonde and borehole wall. These results of numerical modeling quantitatively reflect effects of casing and fluid in borehole, and moreover, demonstrate constant patterns with interval change from borehole wall. From this study, numerical modeling using MCNP shows a good applicability for well logging, and therefore, can be efficiently used for the calibration of well logging data under the various borehole conditions.

Analysis of the Current-voltage Curves of a Cu(In,Ga)Se2 Thin-film Solar Cell Measured at Different Irradiation Conditions

  • Lee, Kyu-Seok;Chung, Yong-Duck;Park, Nae-Man;Cho, Dae-Hyung;Kim, Kyung-Hyun;Kim, Je-Ha;Kim, Seong-Jun;Kim, Yeong-Ho;Noh, Sam-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.321-325
    • /
    • 2010
  • We analyze the current density - voltage (J - V) curve of a Cu(In,Ga)$Se_2$ (CIGS) thin-film solar cell measured at different irradiation power densities. For the solar-cell sample investigated in this study, the fill factor and power conversion efficiency decreased as the irradiation power density (IPD) increased in the range of 2 to 5 sun. Characteristic parameters of solar cell including the series resistance ($r_s$), the shunt resistance ($r_{sh}$), the photocurrent density ($J_L$), the saturation current density ($J_s$) of an ideal diode, and the coefficient ($C_s$) of the diode current due to electron-hole recombination via ionized traps at the p-n interface are determined from a theoretical fit to the experimental data of the J - V curve using a two-diode model. As IPD increased, both $r_s$ and $r_{sh}$ decreased, but $C_s$ increased.

Leakage Current of Capacitive BST Thin Films (BST 축전박막의 누설전류 평가)

  • 인태경;안건호;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.803-810
    • /
    • 1997
  • Ba0.5Sr0.5TiO3 thin films were deposited by RF magnetron sputliring method in order to clarify the anneal condition and doping effect on loakage current Nb and Al were selected as electron donor and acceptor dopants respectively, in the BST films because they have been known to have nearly same ionic radii as Ti and thought to substitute Ti sites to influence the charge carrier and the acceptor state adjacent to the gram boundary. BST thin films prepared in-situ at elevated temperature showed selatively high leakage current density and low breakdown voltage. In order to achieve smooth surface and to improve electrical properties, BST thin films were deposited at room temperature and annealed at elevated temperature. Post-annealed BST thin films showed smoother surface morphology and lower leakage current density than in-situ prepared thin films. The leakage current density of Al doped thin films was measured to be around 10-8A/cm2, which is much lower than those of undoped and Nb doped BST films. The result clearly demonstrates that higher Schottky barrier and lower mobile charge carrier concentration achieved by annealing in the oxygen atmosphere and by Al doping are desirable for reducing leakage current density in BST thin films.

  • PDF

Exploring Influence of Network Structure, Organizational Learning Culture, and Knowledge Management Participation on Individual Creativity and Performance: Comparison of SI Proposal Team and R&D Team (네트워크 구조와 조직학습문화, 지식경영참여가 개인창의성 및 성과에 미치는 영향에 관한 실증분석: SI제안팀과 R&D팀의 비교연구)

  • Lee, Kun-Chang;Seo, Young-Wook;Chae, Seong-Wook;Song, Seok-Woo
    • Asia pacific journal of information systems
    • /
    • v.20 no.4
    • /
    • pp.101-123
    • /
    • 2010
  • Recently, firms are operating a number of teams to accomplish organizational performance. Especially, ad hoc teams like proposal preparation team are quite different from permanent teams like R&D team in the sense of how the team forms network structure and deals with organizational learning culture and knowledge management participation efforts. Moreover, depending on the team characteristics, individual creativity will differ from each other, which will lead to organizational performance eventually. Previous studies in the field of creativity are lacking in this issue. So main objectives of this study are organized as follows. First, the issue of how to improve individual creativity and organizational performance will be analyzed empirically. This issue will be performed depending on team characteristics such as ad hoc team and permanent team. Antecedents adopted for this research objective are cultural and knowledge factors such as organizational learning culture, and knowledge management participation. Second, the network structure such as degree centrality, and structural hole is used to analyze its influence on individual creativity and organizational performance. SI (System Integration) companies are facing severely tough requirements from clients to submit very creative proposals. Also, R&D teams are widely accepted as relatively creative teams because their responsibilities are focused on suggesting innovative techniques to make their companies remain competitive in the market. SI teams are usually ad hoc, while R&D teams are permanent on an average. By taking advantage of these characteristics of the two kinds of teams, we will prove the validity of the proposed research questions. To obtain the survey data, we accessed 7 SI teams (74 members), and 6 R&D teams (63 members), collecting 137 valid questionnaires. PLS technique was applied to analyze the survey data. Results are as follows. First, in case of SI teams, organizational learning culture affects individual creativity significantly. Meanwhile, knowledge management participation has a significant influence on Individual creativity for the permanent teams. Second, degree centrality Influences individual creativity significantly in case of SI teams. This is comparable with the fact that structural hole has a significant impact on individual creativity for the R&D teams. Practical implications can be summarized as follows: First, network structure of ad hoc team should be designed differently from one of permanent team. Ad hoc team is supposed to show a high creativity in a rather short period, implying that network density among team members should be improved, and those members with high degree centrality should be encouraged to show their Individual creativity and take a leading role by allowing them to get heavily engaged in knowledge sharing and diffusion. In contrast, permanent team should be designed to take advantage of structural hole instead of focusing on network density. Since structural hole can be utilized very effectively in the permanent team, strong arbitrators' merits in the permanent team will increase and therefore helps increase both network efficiency and effectiveness too. In this way, individual creativity in the permanent team is likely to lead to organizational creativity in a seamless way. Second, way of Increasing individual creativity should be sought from the perspective of organizational culture and knowledge management. Organization is supposed to provide a cultural atmosphere in which Innovative idea suggestions and active discussion among team members are encouraged. In this way, trust builds up among team members, facilitating the formation of organizational learning culture. Third, in the ad hoc team, organizational looming culture should be built such a way that individual creativity can grow up fast in a rather short period. Since time is tight, reasonable compensation policy, leader's Initiatives, and learning culture formation should be done In a short period so that mutual trust is built among members quickly, and necessary knowledge and information can be learnt rapidly. Fourth, in the permanent team, it should be kept in mind that the degree of participation in knowledge management determines level of Individual creativity. Therefore, the team ought to facilitate knowledge circulation process such as knowledge creation, storage, sharing, utilization, and learning among team members, which will lead to team performance. In this way, firms must control knowledge networks in permanent team and ad hoc team in a way mentioned above so that individual creativity as well as team performance can be maximized.

Enhanced Efficiency of Organic Electroluminescence Diode Using 2-TNATA:C60 Hole Injection Layer (2-TNATA:C60 정공 주입층을 이용한 유기발광다이오드의 성능 향상 연구)

  • Park, So-Hyun;Kang, Do-Soon;Park, Dae-Won;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.372-376
    • /
    • 2008
  • Vacuum deposited 4,4',4"-tris(N-(2-naphthyl)-N-phenylamino)-triphenylamine (2-TNATA), used as a hole injection (HIL) material in OLEDs, is placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in the devices. C60-doped 2-TNATA:C60 (20 wt%) film was formed via co-evaporation process and molecular ordering and topology of 2-TNATA:C60 films were investigated using XRD and AFM. The J-V, L-V and current efficiency of multi-layered devices were characterized as well. Vacuum-deposited C60 film was molecularly oriented, but neither was 2-TNATA:C60 film due to the uniform dispersion of C60 molecules in the film. By using C60-doped 2-TNATA:C60 film as a HIL, the current density and luminance of a multi-layered ITO/2-TNATA:C60/NPD/$Alq_3$/LiF/Al device were significantly increased and the current efficiency of the device was increased from 4.7 to 6.7 cd/A in the present study.

Performance Characteristics of p-i-n type Organic Thin-film Photovoltaic Cell with Rubrene:CuPc Hole Transport Layer (Rubrene:CuPc 정공 수송층이 도입된 p-i-n형 유기 박막 태양전지의 성능 특성 연구)

  • Kang, Hak-su;Hwang, Jongwon;Kang, Yongsu;Lee, Hyehyun;Choe, Youngson
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.654-659
    • /
    • 2010
  • We have investigated the effect of rubrene-doped CuPc hole transport layer on the performance of p-i-n type bulk hetero-junction photovoltaic device with a structure of ITO/PEDOT:PSS/CuPc: rubrene/CuPc:C60(blending ratio 1:1)/C60/BCP/Al and have evaluated the current density-voltage(J-V) characteristics, short-circuit current($J_{sc}$), open-circuit voltage($V_{oc}$), fill factor(FF), and energy conversion efficiency(${\eta}_e$) of the device. By rubrene doping into CuPc hole transport layer, absorption intensity in absorption spectra decreased. However, the performance of p-i-n organic type bulk hetero-junction photovoltaic device fabricated with crystalline rubrene-doped CuPc was improved since rubrene shows higher bandgap and hole mobility compared to CuPc. Increased injection currents have effected on the performance improvement of the present device with energy conversion efficiency(${\eta}_e$) of 1.41%, which is still lower value compared to silicone solar cell and many efforts should be made to improve organic photovoltaic devices.

Characteristics of Si Nano-Crystal Memory

  • Kwangseok Han;Kim, Ilgweon;Hyungcheol Shin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.1
    • /
    • pp.40-49
    • /
    • 2001
  • We have developed a repeatable process of forming uniform, small-size and high-density self-assembled Si nano-crystals. The Si nano-crystals were fabricated in a conventional LPCVD (low pressure chemical vapor deposition) reactor at $620^{\circ}c$ for 15 sec. The nano-crystals were spherical shaped with about 4.5 nm in diameter and density of $5{\times}l0^{11}/$\textrm{cm}^2$. More uniform dots were fabricated on nitride film than on oxide film. To take advantage of the above-mentioned characteristics of nitride film while keeping the high interface quality between the tunneling dielectrics and the Si substrate, nitride-oxide tunneling dielectrics is proposed in n-channel device. For the first time, the single electron effect at room temperature, which shows a saturation of threshold voltage in a range of gate voltages with a periodicity of ${\Delta}V_{GS}\;{\approx}\;1.7{\;}V$, corresponding to single and multiple electron storage is reported. The feasibility of p-channel nano-crystal memory with thin oxide in direct tunneling regime is demonstrated. The programming mechanisms of p-channel nano-crystal memory were investigated by charge separation technique. For small gate programming voltage, hole tunneling component from inversion layer is dominant. However, valence band electron tunneling component from the valence band in the nano-crystal becomes dominant for large gate voltage. Finally, the comparison of retention between programmed holes and electrons shows that holes have longer retention time.

  • PDF

Raman scattering Wings of Hydrogen in Active Galactic Nuclei

  • Chang, Seok-Jun;Heo, Jeong-Eun;Di Mille, Francesco;Angeloni, Rodolfo;Palma, Tali;Hong, Chae-Lin;Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.48.1-48.1
    • /
    • 2015
  • Active galactic nuclei (AGNs) are powered by a supermassive black hole with an accretion disk and exhibit prominent broad and narrow emission lines. The unification model AGNs requires the presence of a geometrically and optically thick torus component that hides the broad line region from observers lying in the equatorial direction. The strong far UV radiation characterizing AGN spectra is expected to be scattered inelastically in the torus region to reappear around hydrogen Balmer lines or Paschen lines in the form of broad wings. Adopting a Monte Carlo technique we produce broad wings around $H{\alpha}$, $H{\beta}$ and $Pa{\alpha}$ that are formed through Raman scattering. The widths of the wings are mainly affected by the neutral column density of the torus, and the overall strengths are primarily determined by the covering factor and the column density of the neutral region. It is concluded that deep spectroscopy of AGNs of broad wings around hydrogen emission lines may shed much light on the AGN unification model.

  • PDF