• Title/Summary/Keyword: Hole Quality

Search Result 395, Processing Time 0.028 seconds

X-ray Image Processing for the Korea Red Ginseng Inner Hole Detection (II) - Results of inner hole detection - (홍삼 내공검출을 위한 X-선 영상처리기술 (II) - 내공검출결과 -)

  • 손재룡;최규홍;이강진;최동수;김기영
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.45-52
    • /
    • 2003
  • Red ginsengs are inspected manually by examining those in the dark room with back light illumination. Manual inspection is often influenced by physical condition of inspectors. Sometimes. the best grade, heaven. has some inner holes though it was inspected by a specialist. In order to resolve this problem, this study was performed to develop image processing algorithm to detect the inner holes in the x-ray image of ginseng. Because of little gray value difference between background and ginseng in the image. simple thresholding method was not appropriate. Modified watershed algorithm was used to differentiate the inner holes from background and normal ginseng body. Inner hole edge region detected by watershed algorithm consists of many number of blobs including normal portions. With line profile analysis with scanning one line at a time beginning the starting point. it shelved two peaks both ends representing extracting each blobs. in which setting threshold value as of lower peak value enabled us to obtain inner hole image. Once this procedure has to be done till the finishing point it is completing inner hole detection for one blob. Thus. conducting ail blobs by this procedure is completing inner detection of one whole ginseng. Detection results of the inner holes fer various size of red ginsengs were good even though there was small detection variation. 6.2%. according to position of x-rat tube.

Dimensional Quality Assessment for Assembly Part of Prefabricated Steel Structures Using a Stereo Vision Sensor (스테레오 비전 센서 기반 프리팹 강구조물 조립부 형상 품질 평가)

  • Jonghyeok Kim;Haemin Jeon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.173-178
    • /
    • 2024
  • This study presents a technique for assessing the dimensional quality of assembly parts in Prefabricated Steel Structures (PSS) using a stereo vision sensor. The stereo vision system captures images and point cloud data of the assembly area, followed by applying image processing algorithms such as fuzzy-based edge detection and Hough transform-based circular bolt hole detection to identify bolt hole locations. The 3D center positions of each bolt hole are determined by correlating 3D real-world position information from depth images with the extracted bolt hole positions. Principal Component Analysis (PCA) is then employed to calculate coordinate axes for precise measurement of distances between bolt holes, even when the sensor and structure orientations differ. Bolt holes are sorted based on their 2D positions, and the distances between sorted bolt holes are calculated to assess the assembly part's dimensional quality. Comparison with actual drawing data confirms measurement accuracy with an absolute error of 1mm and a relative error within 4% based on median criteria.

Fatigue Quality Index of Elliptical Holed Plate (평판에서 타원공의 형상에 따른 피로도지수)

  • Song Joonhyuk;Shimamoto A.;Nah Seokchan;Yu Hyosun;Kang Heeyong;Yang Sungmo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.90-95
    • /
    • 2005
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints with various shapes of cutouts. It is important to study these connected structures under dynamic forces for evaluation of stress concentration. In this paper, a FQI(fatigue quality index) analysis using the concept of SF(severity factor) is performed to various shape of elliptical hole. The SF is affected by the location of cutout in plate and radius ratio, static SF is analyzed with finite element analysis and the equation of FQI for predicting a dynamic SF is formed.

A Study on the Drilling Performance of the Assembly Machine for the an Aircraft's Main Wings (항공기 주익 조립 장비의 드릴링 성능에 관한 연구)

  • Hong, Seong-Min;Park, Dae-Hun;Han, Sung-Gil;Song, Chul-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • Recently, the manufacturing market for low-cost airlines has led to an increase in aircraft demand. Most processes in the production of these aircrafts are manual such as drilling, sealing, and swaging. A drilling and riveting machine is a numerical-control based equipment that automatically performs drilling, sealing, and swaging operations. The accuracy of the drilled holes and the exit burr length has a significant impact on the quality of the aircraft wing during assembly. This study was conducted to identify the conditions necessary to maintain a uniform quality by controlling the rotation speed of the spindle, which directly affects the hole diameter and the quality of the exit burr.

Optimization of Processing Conditions According to Run-out During End-mill Round Machining (엔드밀 원형 가공 시 런아웃에 따른 가공조건 최적화)

  • Lee, Ha-Neul;Choi, Hee-Kwan;Kim, Young-Shin;Jeon, Euy-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.57-65
    • /
    • 2021
  • With the increased utilization of CAM programs, end-mill processing is most commonly used for machining and metal processing. In particular, hole or shaft machining has high assembly precision, which inevitably leads to high utilization of end mills. However, the analysis of quality characteristics according to the process conditions of end mills is not performed systematically at the site, causing poor quality and productivity. The most influential factor of quality is the runout of the end mill. In this paper, the number of turns of the end mill, number of tool blades, cutting direction, and artificial runout volume were determined to identify the correlation between the epicenter, cylindricality, and surface roughness. Two types of end mills, three levels of runout, three levels of rotational speed, and two cutting directions were considered and 36 rounds of hole processing were conducted. For the analysis of shape characteristics according to the set process variables, the experimental planning method was applied to the measured specimen and the processing characteristics were analyzed according to the runout of the end mill through correlation analysis.

A Method of Hole Pass-Through Evaluation for EDM Drilling (방전드릴링에서 홀 관통 평가 방법)

  • Lee, Cheol-Soo;Choi, In-Hugh;Heo, Eun-Young;Kim, Jong-Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.3
    • /
    • pp.220-226
    • /
    • 2012
  • The Electric discharge machining (EDM) process is used to minimize the difference between designed feature and machined feature while the most workpiece is removed through the cutting processes. The tiny-deep hole machining and perpendicular wall machining in mold and die are good applications of EDM. Among EDM equipment, the super drill uses the hollowed electrode to eliminate the debris which causes the second discharge with the electrode and degrades the machining quality. Through the hollow, the high pressured discharge oil is supplied to remove the debris together with the spindle rotation. The thin-hollow electrode tends to easily wear out compared to the sold die-sinking electrode and its wear rate is might not allowed to monitor in real time during discharging. Up to now, the wear amount is measured by off line method, which leads machining time to increase because the hole pass-through moment can be check by visual (manually) with the extra tool path. Therefore, this study suggests the attractive method to evaluate the hole pass-through moment in which the gap voltage and z-axis encoder pulse are monitored to predict the moment. The commercial super drill is used to validate the proposed method and the experiment is carried out.

Hole-Filling Method for Depth-Image-Based Rendering for which Modified-Patch Matching is Used (개선된 패치 매칭을 이용한 깊이 영상 기반 렌더링의 홀 채움 방법)

  • Cho, Jea-Hyung;Song, Wonseok;Choi, Hyuk
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.186-194
    • /
    • 2017
  • Depth-image-based rendering is a technique that can be applied in a variety of 3D-display systems. It generates the images that have been captured from virtual viewpoints by using a depth map. However, disoccluded hole-filling problems remain a challenging issue, as a newly exposed area appears in the virtual view. Image inpainting is a popular approach for the filling of the hole region. This paper presents a robust hole-filling method that reduces the error and generates a high quality-virtual view. First, the adaptive-patch size is decided using the color and depth information. Also, a partial filling method for which the patch similarity is used is proposed. These efforts reduce the error occurrence and the propagation. The experiment results show that the proposed method synthesizes the virtual view with a higher visual comfort compared with the existing methods.

A Channel Allocation Scheme Based on Spectrum Hole Prediction in Cognitive Radio Wireless Networks (무선인지 통신망에서 스펙트럼 홀 예측에 의한 채널할당)

  • Lee, Jin-yi
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.318-322
    • /
    • 2015
  • In wireless communication networks, most of the prediction techniques are used for predicting the amount of resource required by user's calls for improving their demanding quality of service. However, we propose a channel allocation scheme based on predicting the resources of white spectrum holes for improving the QoS of rental user's spectrum handoff calls for cognitive radio networks in this paper. This method is supported by Wiener predictor to predict the amount of white spectrum holes of license user's free spectrum resources. We classify rental user's calls into initial calls and spectrum handoff calls, and some portion of predicted spectrum-hole resources is reserved for spectrum handoff calls' priority allocation. Simulations show that the performance of the proposed scheme outperforms in spectrum handoff call's dropping rate than an existing method without spectrum hole prediction(11% average improvement in 50% reservation).

Development of a Coded-aperture Gamma Camera for Monitoring of Radioactive Materials (방사성 물질 감시를 위한 부호화 구경 감마카메라 개발)

  • Cho, Gye-Seong;Shin, Hyung-Joo;Chi, Yong-Ki;Yoon, Jeong-Hyoun
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.257-261
    • /
    • 2004
  • A coded-aperture gamma camera was developed to increase the sensitivity of a pin hole camera made with a pixellated CsI(Tl) scintillator and a position-sensitive photomultiplier tube. The modified round-hole uniformly redundant array of pixel size $13{\times}11$ was chosen as a coded mask considering the detector spatial resolution. The performance of the coded-aperture camera was compared with the pin hole camera using various forms of Tc-99m source to see the improvement of signal-to-noise ratio or the improvement of the sensitivity. The image quality is much improved despite of a slight degradation of the spatial resolution. Though the camera and the test were made for low energy case, but the concept of the coded-aperture gamma camera could be effectively used for the radioactive environmental monitoring and other applications.