DOI QR코드

DOI QR Code

A Channel Allocation Scheme Based on Spectrum Hole Prediction in Cognitive Radio Wireless Networks

무선인지 통신망에서 스펙트럼 홀 예측에 의한 채널할당

  • Lee, Jin-yi (Department of Electronic Engineering, Chungwoon University)
  • Received : 2015.07.14
  • Accepted : 2015.08.10
  • Published : 2015.08.30

Abstract

In wireless communication networks, most of the prediction techniques are used for predicting the amount of resource required by user's calls for improving their demanding quality of service. However, we propose a channel allocation scheme based on predicting the resources of white spectrum holes for improving the QoS of rental user's spectrum handoff calls for cognitive radio networks in this paper. This method is supported by Wiener predictor to predict the amount of white spectrum holes of license user's free spectrum resources. We classify rental user's calls into initial calls and spectrum handoff calls, and some portion of predicted spectrum-hole resources is reserved for spectrum handoff calls' priority allocation. Simulations show that the performance of the proposed scheme outperforms in spectrum handoff call's dropping rate than an existing method without spectrum hole prediction(11% average improvement in 50% reservation).

무선통신망에서 예측기법을 이용하는 경우는 대부분 사용자호가 요구하는 자원의 크기를 예측하여 미리 요구자원을 예약함으로써 사용자호가 요구하는 품질을 보장한다. 그러나 본 논문에서는 무선인지통신망에서 면허사용자가 사용하지 않는 스펙트럼홀(spectrum hole)자원의 크기를 예측하여 대여사용자의 스펙트럼 핸드오프호의 서비스 품질을 향상시킬 수 있는 채널할당방법을 제안한다. 스펙트럼홀의 예측은 위너예측모델을 이용한다. 채널할당 방법은 대여사용자호를 초기 발생호와 스펙트럼 핸드오프호로 구분하고, 예측된 스펙트럼홀 자원의 일정부분을 예약하여 스펙트럼 핸드오프호에 우선적으로 할당한다. 시뮬레이션을 통하여 제안한 기법이 스펙트럼홀 예측을 사용하지 않는 방법보다 대여사용자의 스펙트럼 핸드오프호의 서비스 품질을 향상(50% 예약시 평균 11% 개선)시킬 수 있음을 보인다.

Keywords

References

  1. Federal Communications Commission, Spectrum policy task force report, FCC 02-155, Nov. 2002.
  2. I. F. Akyildiz, W. Y. Lee, et al., "Next generation/dynamic spectrum access / cognitive radio wireless networks : a survey," Computer Networks, Vol. 50, pp. 2127-2159, 2006. https://doi.org/10.1016/j.comnet.2006.05.001
  3. J. Y. Lee, "Channel reservation scheme using Wiener prediction theory for cognitive radio networks," The Journal of Korea Navigation Institute, Vol. 15, No. 5, pp. 757-763, Oct. 2011.
  4. J. Y. Lee, "A call admission control using markovian queueing model for multi-services cognitive radio networks," The Journal of Korea Navigation Institute, Vol. 18, No. 4, pp.436-441, Aug. 2014.
  5. X. Li, et al.,"Traffic pattern prediction and performance investigation for cognitive radio systems," in The Proceedings of Wireless Communications and Networking Conference 2008, Las Vegas: NV, pp.894-899, 2008.
  6. Z. Wen, et al., "Autoregressive spectrum hole prediction model for cognitive radio systems," in The Proceedings of International Conference on Communications 2008, Beijing: China, pp.154-157, 2008.
  7. W. Ahmed, et al., "Comments on "Analysis of cognitive radio spectrum access with optimal channel reservation," IEEE Transaction on Wireless Communication, Vol. 8, No. 9, pp. 4488-4491, Sept. 2009. https://doi.org/10.1109/TWC.2009.090446
  8. X. Zhu, L. Shen, and T.-S.P. Yum, "Analysis of cognitive radio spectrum access with optimal channel reservation," IEEE Communication Letters, Vol. 11, No. 4, pp.304-306, Apr. 2007. https://doi.org/10.1109/LCOM.2007.348282
  9. T. Zhang, E. van den Berg, J. Chennikara, P. Agrawal, J. C. Chen, and T. Kodama, "Local predictive resource reservation for handoff in multimedia wireless IP networks," The Journal on Selected Areas Communications (JSAC), IEEE, Vol. 19, No. 10, pp. 1931-1941, Oct. 2001. https://doi.org/10.1109/49.957308