• Title/Summary/Keyword: Hole Displacement

Search Result 122, Processing Time 0.022 seconds

A Study on the Development of Rotary Ultrasonic Machining Spindle (회전 초음파가공 주축 개발에 관한 연구)

  • Li, Chang-Ping;Kim, Min-Yeop;Park, Jong-Kweon;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.160-166
    • /
    • 2015
  • Ultrasonic machining (USM) has been considered a new, cutting-edge technology that presents no heating or electrochemical effects, with low surface damage and small residual stresses on brittle workpieces. However, nowadays, many researchers are paying careful attention to the disadvantages of USM, such as low productivity and tool wear. On the other hand, in this study, a high-performance rotary ultrasonic drilling (RUD) spindle is designed and assembled. In this system, the core technology is the design of an ultrasonic vibration horn for the spindle using finite element analysis (FEA). The maximum spindle speed of RUM is 9,600 rpm, and the highest harmonic displacement is $5.4{\mu}m$ noted at the frequency of 40 kHz. Through various drilling experiments on glass workpieces using a CVD diamond-coated drill, the cutting force and cracking of the hole entrance and exit side in the glass have been greatly reduced by this system.

Structural and Thermal Analysis of Disk Brake (디스크 브레이크의 구조 및 열 해석)

  • Cho, Jae-Uug;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.211-215
    • /
    • 2010
  • Continuous contraction and expansion of disk brake can be due to friction and temperature difference at repeated sudden braking. As serious vibration at disk is produced, the braking force will be changed ununiformly and braking system can not be stabilized. Temperature and heat flux at disk brake are investigated by structural and thermal analysis in this study. The maximum equivalent stress and displacement are shown respectively at the ventilated hole and the lower part of disk plate. At thermal analysis of initial state, temperature on disk plate is distributed from $95.9^{\circ}C$ to $100^{\circ}C$. The maximum heat flux of $0.0168W/mm^2$ is shown at the inner friction part between disk plate and pad. At thermal analysis of transient state, temperature on disk plate is distributed from $95^{\circ}C$ to $96.5^{\circ}C$ after 100 second. The maximum heat flux of $0.0024W/mm^2$ is also shown at the inner friction part between disk plate and pad. By comparing with initial state, the temperature on disk plate is more uniformly distributed and heat flux is more decreased by 7 times at transient state.

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.

Experimental and Numerical Study on an Air-Stabilized Flexible Disk Rotating Close to a Rigid Rotating Disk (회전원판 근처에서 회전하는 유연디스크에 대한 실험 및 수치해석)

  • Gad, Abdelrasoul M.M.;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.19-35
    • /
    • 2009
  • The present work is an experimental and analytical study on a flexible disk rotating close to a rigid rotating disk in open air. In the analytical study, the air flow in the gap between the flexible disk and the rigid disk is modeled using Navier-Stokes and continuity equations while the flexible disk is modeled using the linear plate theory. The flow equations are discretized using the cell centered finite volume method (FVM) and solved numerically with semi-implicit pressure-linked equations (SIMPLE algorithm). The spatial terms in the disk equation are discretized using the finite difference method (FDM) and the time integration is performed using fourth-order Runge-Kutta method. An experimental test-rig is designed to investigate the dynamics of the flexible disk when rotating close to a co-rotating, a counter-rotating and a fixed rigid disk, which works as a stabilizer. The effects of rotational speed, initial gap height and inlet-hole radius on the flexible disk displacement and its vibration amplitude are investigated experimentally for the different types of stabilizer. Finally, the analytical and experimental results are compared.

  • PDF

An Estimation of Behavior for Wedge type Removable Soil Nailing System by Field Trial Construction (현장시험시공을 통한 쐐기형 제거식 쏘일네일링 공법의 거동 평가)

  • Han, Yeon-Jin;Park, Si-Sam;Kwon, Hyuk-Jun;Kim, Hong-Taek;Park, Ju-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1360-1364
    • /
    • 2009
  • Necessity of removable soil nailing has been arisen in the soil nailing system because of problem such as civil petition for geotechnical environment and invasion of the ground boundary line and payments for use besides geotechnical engineering. Removable soil nailing system is improved soil nailing system that fixed socket arranged in boring hole for increasement of skin friction. In this study, field pull-out tests are carried out more 4 times considering installed distance of fixed socket and analyze skin friction behavior characteristics in fixed socket through analysis of measurements of strain gauge attached to fixed socket. Also, to evaluate application for wedge type removable soil nailing system analyzing displacement aspects through field pull-out tests by trial construction.

  • PDF

Behavior Analysis of Block Type Wall Constructed for Maintaining the Slope Stability of Rural Structure (농촌건축물 사면 안정성 확보를 위한 블록식 옹벽의 거동분석)

  • Shin, Bangwoong;Oh, Sewook;Kwon, Youngcheul
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.2 no.2
    • /
    • pp.115-126
    • /
    • 2000
  • Retaining walls are used to prevent excessive movement of retained soils. Typical retaining walls include gravity, reinforced concrete, reinforced earth and tie-back. However, from a practical viewpoint there are still drawbacks among these often constructed retaining walls. New types of retaining walls constructed with precast concrete blocks are proposed. This type of retaining wall is incorporates each blocks interconnected with adjacent block by connecting unit to build up a flexible retaining-wall system. This paper focus to behavior characteristics includes deformation and distribution of lateral earth pressure by loading tests and FEM analysis. For model tests, a 1/10 scale reduce models are manufactured include unevenness part, drainage hole and connecting unit and steel wire used to connect each blocks with adjacent block. To simulate the real retaining walls closely, uneven parts are interconnected each other and the construction type of blocks and wall front inclination are varied to investigate the relative displacement of individual block and the location of maximum deformation of wall as increasing surcharging. Additionally, PENTAGON3D, which solve the geotechnical and other problem, used for verifying and comparing with model tests.

  • PDF

Effects of Intake Swirl and Combustion Parameters on the Performance and Emission in a V8 Type Turbocharged Intercooler Diesel Engine (흡기 선회유동 및 연소인자가 V8형 TCI 디젤엔진의 성능 및 배출가스특성에 미치는 영향)

  • Yoon Junkyu;Cha Kyungok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.135-144
    • /
    • 2005
  • The Effects of intake swirl and combustion parameters on the performance and emission characteristics in a V8 type turbocharged intercooler D.I. diesel engine of the displacement $16.7\iota$ were studied experimentally in this paper. Generally the swirl in the combustion process of diesel engine promotes mixing of the injection fuel and the intake air. Also, TCI diesel engine is put to practically use intercooler in order to increase boost efficiency which is cooled boost air. As a result of steady flow test, when the swirl ratio is increased, the mean flow coefficient is decreased, whereas the Gulf factor is increased. And through engine test, its can be effected to meet performance and emission by optimizing the main parameters; the swirl ratio is 2.25, compression ratio is 17.5, combustion bowl is re-entrant $8.5^{\circ}$, nozzle hole diameter is $\phi0.33^{\ast}3+\phi0.35^{\ast}2$, injection timing is BTDC $12^{\circ}CA$ and turbocharger is T02 model which are compressor 0.6A/R+46trim and turbine 1.0A/R+57trim.

A Study on the Emission Reduction and Performance Improvement in a V8 Type TCI D.I. Diesel Engine (V8형 TCI 디젤기관의 배출가스저감 및 성능개선에 관한 연구)

  • Yoon Jun-Kyu;Lim Jong-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.443-452
    • /
    • 2005
  • The purpose of this study is experimentally to analyze the effects of intake port swirl, injection system and turbocharger on the engine performance and the emission characteristics in a V8 type turbocharger intercooler D.I. diesel engine of the displacement 16.7L, and to suggest the improvement of engine performance. Generally to enhance engine power, TCI diesel engine is put to practically use turbocharged intercooler in order to increase volume efficiency which is cooled boost air. As results of considering the factors of the intake port of swirl ratio 2.25, compression ratio 17.5. re-entrant $8.5^{\circ}$ combustion bowl, nozzle hole diameter ${\phi}0.33{\ast}3+{\phi}0.35{\ast}2$. nozzle protrusion 3.18mm, injection timing BTDC $12^{\circ}CA$ and turbocharger(compressor 0.6A/R+46Trim. turbine 1.0 A/R+57Trim) is the best in the full load in the engine performance and the exhaust characteristics of NOx concentration. Therefore. their factors are appropriated as intake system, injection and turbocharger system.

Frequency-Based Image Analysis of Random Patterns: an Alternative Way to Classical Stereocorrelation

  • Molimard, J.;Boyer, G.;Zahouani, H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.181-193
    • /
    • 2010
  • The paper presents an alternative way to classical stereocorrelation. First, 2D image processing of random patterns is described. Sub-pixel displacements are determined using phase analysis. Then distortion evaluation is presented. The distortion is identified without any assumption on the lens model because of the use of a grid technique approach. Last, shape measurement and shape variation is caught by fringe projection. Analysis is based on two pin-hole assumptions for the video-projector and the camera. Then, fringe projection is coupled to in-plane displacement to give rise to 3D measurement set-up. Metrological characterization shows a resolution comparable to classical (stereo) correlation technique ($1/100^{th}$ pixel). Spatial resolution seems to be an advantage of the method, because of the use of temporal phase stepping (shape measurement, 1 pixel) and windowed Fourier transform (in plane displacements measurement, 9 pixels). Two examples are given. First one is the study of skin properties; second one is a study on leather fabric. In both cases, results are convincing, and have been exploited to give mechanical interpretation.

Strength and stiffness of cold-formed steel portal frame joints using quasi-static finite element analysis

  • Mohammadjani, Chia;Yousefi, Amir M.;Cai, Shu Qing;Clifton, G. Charles;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.727-734
    • /
    • 2017
  • This paper describes a quasi-static finite element analysis, which uses the explicit integration method, of the apex joint of a cold-formed steel portal frame. Such cold-formed steel joints are semi-rigid as a result of bolt-hole elongation. Furthermore, the channel-sections that are being connected have a reduced moment capacity as a result of a bimoment. In the finite element model described, the bolt-holes and bolt shanks are all physically modelled, with contact defined between them. The force-displacement curves obtained from the quasi-static analysis are shown to be similar to those of the experimental test results, both in terms of stiffness as well as failure load. It is demonstrated that quasi-static finite element analysis can be used to predict the behavior of cold-formed steel portal frame joints and overcome convergence issues experienced in static finite element analysis.