• Title/Summary/Keyword: Hit probability

Search Result 85, Processing Time 0.024 seconds

Naval ship's susceptibility assessment by the probabilistic density function

  • Kim, Kwang Sik;Hwang, Se Yun;Lee, Jang Hyun
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.266-271
    • /
    • 2014
  • The survivability of the naval ship is the capability of a warship to avoid or withstand a hostile environment. The survivability of the naval ship assessed by three categories (susceptibility, vulnerability and recoverability). The magnitude of susceptibility of a warship encountering with threat is dependent upon the attributes of detection equipment and weapon system. In this paper, as a part of a naval ship's survivability analysis, an assessment process model for the ship's susceptibility analysis technique is developed. Naval ship's survivability emphasizing the susceptibility is assessed by the probability of detection, and the probability of hit. Considering the radar cross section (RCS), the assessment procedure for the susceptibility is described. It's emphasizing the simplified calculation model based on the probability density function for probability of hit. Assuming the probability of hit given a both single-hit and multiple-hit, the susceptibility is accessed for a RCS and the hit probability for a rectangular target is applied for a given threat.

A Study on a Hit Probability Model for Polygonal Target (다각형 표적의 명중확률 산정모델의 연구)

  • 황흥석
    • Journal of the military operations research society of Korea
    • /
    • v.25 no.1
    • /
    • pp.160-168
    • /
    • 1999
  • This research focussed on developing a hit probability model for polygonal target to increase the survivability of weapon systems by its shape design. First, we defined the delivery errors and derived functions for these errors based on the assumption of bivariate normal distribution, and the derived functions for probability of shot hitting of various shapes of polygonal target. Also, we developed computer program for computation of the probability of hitting a general n-sided polygon and we have shown a sample run output. The model could be used to improve the survivability from design phase by designing optimal polygonal shape of weapon system.

  • PDF

Stochastic Combat Simulation with Variable Hit Probabilities (명중확률의 변화를 고려한 확률과정 전투 시뮬레이션)

  • 홍윤기
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.2
    • /
    • pp.76-87
    • /
    • 2001
  • The effect of variable hit probabilities in the stochastic duel are examined. The objective of this study is to evaluate the outcomes of combat under the situations which we assume either round dependent hit probabilities or time dependent hit probabilities. Due to the complexity of an analytic approach to large-sized battles, a simulation modeling technique has been introduced. several specific examples are demonstrated fire allocation strategies. Output measures are compared among cases each with its own type of hit probability fashion such as constant, round to round, or time dependent manners. For these specific cases, the advantages of round to round improvement or increasing function of time for the hit probability are displayed.

  • PDF

Random Forest Method and Simulation-based Effect Analysis for Real-time Target Re-designation in Missile Flight (유도탄의 실시간 표적 재지정을 위한 랜덤 포레스트 기법과 시뮬레이션 기반 효과 분석)

  • Lee, Han-Kang;Jang, Jae-Yeon;Ahn, Jae-Min;Kim, Chang-Ouk
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.35-48
    • /
    • 2018
  • The study of air defense against North Korean tactical ballistic missiles (TBM) should consider the rapidly changing battlefield environment. The study for target re-designation for intercept missiles enables effective operation of friendly defensive assets as well as responses to dynamic battlefield. The researches that have been conducted so far do not represent real-time dynamic battlefield situation because the hit probability for the TBM, which plays an important role in the decision making process, is fixed. Therefore, this study proposes a target re-designation algorithm that makes decision based on hit probability which considers real-time field environment. The proposed method contains a trajectory prediction model that predicts the expected trajectory of the TBM from the current position and velocity information by using random forest and moving window. The predicted hit probability can be calculated through the trajectory prediction model and the simulator of the intercept missile, and the calculated hit probability becomes the decision criterion of the target re-designation algorithm for the missile. In the experiment, the validity of the methodology used in the TBM trajectory prediction model was verified and the superiority of using the hit probability through the proposed model in the target re-designation decision making process was validated.

A Method for Reliability Analysis of Armored Fighting Vehicle using RBD based on Integrated Hit Probabilities of Crews and Components (통합 피격 확률 분석을 이용한 RBD 기반의 전차 신뢰도 분석 방법)

  • Hwang, Hun-Gyu;Kang, Ji-Won;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.1040-1048
    • /
    • 2016
  • Recently, the studies of integrated reliability analysis for combat systems are actively progressing. Especially, the research of integrated reliability analysis is emphasized to overcome limitations of the previous studies. In this paper, we propose a calculation technique for integrated hit probability based on front and side hit probabilities that analyzed in previous studies to improve the time-effectiveness. Also, we find out the integrated reliability of each component based on the integrated hit probability which is calculated, and we propose the method which applied the reliability block diagram technique to analyze the whole combat system of the reliability by function kills. For verifying the proposed method, we applied the proposed method to armored fighting vehicle model. The proposed method considers crew which does not considered the element in the previous study and expects to enhance the accuracy of reliability analysis and the time-effectiveness compared with the previous study.

Mathematical Models for Hit Probabilities using Small-arms against Fast Low Flying Aircraft

  • Park, Chan-Tae
    • Journal of the military operations research society of Korea
    • /
    • v.7 no.1
    • /
    • pp.81-117
    • /
    • 1981
  • Mathematical models for hit probabilities of small arms are developed in order to estimate the expected hits on an aircraft for certain altitudes and air speeds. A model for the firing lead angle is developed for cases when the distribution of hits is normal and the firing angle is from 20 degrees to 160 degrees. probabilities of hit for single and multiple shots at various altitudes are calculated. Tables are given showing the probability of hits and kill for targets flying at high speed above 500 feet from ground level.

  • PDF

Analysis of the Estimation of the Deflection and Hit Probability of a Gun Barrel of Next Infantry Fighting Vehicle (차기 보병전투장갑차 포신 처짐량 예측 및 명중률 분석)

  • Yoo, Sam-Hyeon;Chung, Dong-Yoon;Oh, Myoung-Ho;Shin, Nae-Ho;Nam, Suk-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.12-19
    • /
    • 2006
  • A gun barrel of infantry fighting vehicle is supported like a type of cantilever. Temperature of a gun barrel is increased by heat transfer due to the combustion of propellant charge during the firing. Thus, the muzzle of a gun barrel is deflected in accordance with its temperature and the accuracy rate is decreased by deflection of the muzzle. In this study, deflection of a gun barrel is estimated by measuring its restoration rate because measuring the deflection rate is difficult due to the vibration of the gun barrel during the firing. In order to obtain the relations between deflection rate and restoration rate of the 40mm gun barrel of Next Infantry Fighting Vehicle(NIFV) under varying temperature, measurement of deflection rate and restoration rate is carried out using 5.56mm Remington rifle barrel. Effect of the estimated deflection rate of a gun barrel of NIFV on the hit probability is also analyzed.

An Improvement of Hit-probability and an Efficient Counter-fire Execution (명중확률 개선 및 효율적인 대화력전 수행방안)

  • Kim, Se-Yong;Lee, Jae-Yeong
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.143-152
    • /
    • 2008
  • At an initial battle stage, counter-fire capability have critical impact on defeating the enemy in the future warfare. In this paper, we proposed an efficient method of counter-fire execution. To do that, hit-probability for each artillery type was evaluated using CEP and applied to calculate new target reference table of a counter-fire operation. In order to compare new result to the one obtained by using previous reference table from BTCS, we did simulation using MANA model. Simulation outputs show that new method is superior to previous method of counter-fire operation in various scenarios depending upon each method and usage of UAV.

  • PDF

A Study on Measurement of Gun's Attitude of K2 MBT Using Inertial Navigation System and Its Effects on the Hit Probability (관성항법장치를 이용한 K2전차 전차포 자세측정 방법 및 명중률에 미치는 영향에 대한 연구)

  • Kim, Sungho;Kim, GunKook;Kwon, Hyukmin;Yu, Sukjin;Park, Byunghoon;Lee, Byunggil;Kim, Euiwhan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.218-226
    • /
    • 2016
  • In the original design of K2 tank the Vertical Sensor Unit(VSU) was mounted to measure the attitude of the main gun to enhance the hit probability. In this research, as a part of efforts to reduce the cost of K2, it was theoretically simulated and evaluated to use the data from Inertial Navigation System(INS) for the calculation of the gun attitude instead of the direct measurement using VSU. It was found that the negative effect of INS approach is negligible and the elimination of VSU is technically possible and beneficial to the system.

Comparison of Bayesian Methods for Estimating Parameters and Uncertainties of Probability Rainfall Distribution (확률강우분포의 매개변수 및 불확실성 추정을 위한 베이지안 기법의 비교)

  • Seo, Youngmin;Park, Jaeho;Choi, Yunyoung
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.19-35
    • /
    • 2019
  • This study investigates the performance of four Bayesian methods, Random Walk Metropolis (RWM), Hit-And-Run Metropolis (HARM), Adaptive Mixture Metropolis (AMM), and Population Monte Carlo (PMC), for estimating the parameters and uncertainties of probability rainfall distribution, and the results are compared with those of conventional parameter estimation methods; namely, the Method Of Moment (MOM), Maximum Likelihood Method (MLM), and Probability Weighted Method (PWM). As a result, Bayesian methods yield similar or slightly better results in parameter estimations compared with conventional methods. In particular, PMC can reduce parameter uncertainty greatly compared with RWM, HARM, and AMM methods although the Bayesian methods produce similar results in parameter estimations. Overall, the Bayesian methods produce better accuracy for scale parameters compared with the conventional methods and this characteristic improves the accuracy of probability rainfall. Therefore, Bayesian methods can be effective tools for estimating the parameters and uncertainties of probability rainfall distribution in hydrological practices, flood risk assessment, and decision-making support.