• 제목/요약/키워드: Histone modification

검색결과 83건 처리시간 0.037초

Histone tail cleavage as a novel epigenetic regulatory mechanism for gene expression

  • Yi, Sun-Ju;Kim, Kyunghwan
    • BMB Reports
    • /
    • 제51권5호
    • /
    • pp.211-218
    • /
    • 2018
  • Chromatin is an intelligent building block that can express either external or internal needs through structural changes. To date, three methods to change chromatin structure and regulate gene expression have been well-documented: histone modification, histone exchange, and ATP-dependent chromatin remodeling. Recently, a growing body of literature has suggested that histone tail cleavage is related to various cellular processes including stem cell differentiation, osteoclast differentiation, granulocyte differentiation, mammary gland differentiation, viral infection, aging, and yeast sporulation. Although the underlying mechanisms suggesting how histone cleavage affects gene expression in view of chromatin structure are only beginning to be understood, it is clear that this process is a novel transcriptional epigenetic mechanism involving chromatin dynamics. In this review, we describe the functional properties of the known histone tail cleavage with its proteolytic enzymes, discuss how histone cleavage impacts gene expression, and present future directions for this area of study.

Analysis of opposing histone modifications H3K4me3 and H3K27me3 reveals candidate diagnostic biomarkers for TNBC and gene set prediction combination

  • Park, Hyoung-Min;Kim, HuiSu;Lee, Kang-Hoon;Cho, Je-Yoel
    • BMB Reports
    • /
    • 제53권5호
    • /
    • pp.266-271
    • /
    • 2020
  • Breast cancer encompasses a major portion of human cancers and must be carefully monitored for appropriate diagnoses and treatments. Among the many types of breast cancers, triple negative breast cancer (TNBC) has the worst prognosis and the least cases reported. To gain a better understanding and a more decisive precursor for TNBC, two major histone modifications, an activating modification H3K4me3 and a repressive modification H3K27me3, were analyzed using data from normal breast cell lines against TNBC cell lines. The combination of these two histone markers on the gene promoter regions showed a great correlation with gene expression. A list of signature genes was defined as active (highly enriched H3K4me3), including NOVA1, NAT8L, and MMP16, and repressive genes (highly enriched H3K27me3), IRX2 and ADRB2, according to the distribution of these histone modifications on the promoter regions. To further enhance the investigation, potential candidates were also compared with other types of breast cancer to identify signs specific to TNBC. RNA-seq data was implemented to confirm and verify gene regulation governed by the histone modifications. Combinations of the biomarkers based on H3K4me3 and H3K27me3 showed the diagnostic value AUC 93.28% with P-value of 1.16e-226. The results of this study suggest that histone modification analysis of opposing histone modifications may be valuable toward developing biomarkers and targets for TNBC.

Radiation-Induced CXCL12 Upregulation via Histone Modification at the Promoter in the Tumor Microenvironment of Hepatocellular Carcinoma

  • Ahn, Hak Jun;Hwang, Soon Young;Nguyen, Ngoc Hoan;Lee, Ik Jae;Lee, Eun Jeong;Seong, Jinsil;Lee, Jong-Soo
    • Molecules and Cells
    • /
    • 제42권7호
    • /
    • pp.530-545
    • /
    • 2019
  • Tumor cells can vary epigenetically during ionizing irradiation (IR) treatment. These epigenetic variegations can influence IR response and shape tumor aggressiveness. However, epigenetic disturbance of histones after IR, implicating in IR responsiveness, has been elusive. Here, we investigate whether altered histone modification after IR can influence radiation responsiveness. The oncogenic CXCL12 mRNA and protein were more highly expressed in residual cancer cells from a hepatoma heterotopic murine tumor microenvironment and coculture of human hepatoma Huh7 and normal IMR90 cells after radiation. H3K4 methylation was also enriched and H3K9 methylation was decreased at its promoter region. Accordingly, invasiveness and the subpopulation of aggressive $CD133^+/CD24^-$ cells increased after IR. Histone demethylase inhibitor IOX1 attenuated CXCL12 expression and the malignant subpopulation, suggesting that responses to IR can be partially mediated via histone modifications. Taken together, radiation-induced histone alterations at the CXCL12 promoter in hepatoma cells are linked to CXCL12 upregulation and increased aggressiveness in the tumor microenvironment.

Regulatory patterns of histone modifications to control the DNA methylation status at CpG islands

  • Jung, In-Kyung;Kim, Dong-Sup
    • Interdisciplinary Bio Central
    • /
    • 제1권1호
    • /
    • pp.4.1-4.7
    • /
    • 2009
  • Introduction: Histone modifications and DNA methylation are the major factors in epigenetic gene regulation. Especially, revealing how histone modifications are related to DNA methylation is one of the challenging problems in this field. In this paper, we address this issue and propose several plausible mechanisms for precise controlling of DNA methylation status at CpG islands. Materials and Methods: To establish the regulatory relationships, we used 38 histone modification types including H2A.Z and CTCF, and DNA methylation status at CpG islands across chromosome 6, 20, and 22 of human CD4+ T cell. We utilized Bayesian network to construct regulatory network. Results and Discussion: We found several meaningful relationships supported by previous studies. In addition, our results show that histone modifications can be clustered into several groups with different regulatory properties. Based on those findings we predicted the status of methylation level at CpG islands with high accuracy, and suggested core-regulatory network to control DNA methylation status.

Histone Acetylation in Fungal Pathogens of Plants

  • Jeon, Junhyun;Kwon, Seomun;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제30권1호
    • /
    • pp.1-9
    • /
    • 2014
  • Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

Characterization of Chromatin Structure-associated Histone Modifications in Breast Cancer Cells

  • Hong, Chang-Pyo;Choe, Moon-Kyung;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • 제10권3호
    • /
    • pp.145-152
    • /
    • 2012
  • Chromatin structure and dynamics that are influenced by epigenetic marks, such as histone modification and DNA methylation, play a crucial role in modulating gene transcription. To understand the relationship between histone modifications and regulatory elements in breast cancer cells, we compared our chromatin immunoprecipitation sequencing (ChIP-Seq) histone modification patterns for histone H3K4me1, H3K4me3, H3K9/16ac, and H3K27me3 in MCF-7 cells with publicly available formaldehyde-assisted isolation of regulatory elements (FAIRE)-chip signals in human chromosomes 8, 11, and 12, identified by a method called FAIRE. Active regulatory elements defined by FAIRE were highly associated with active histone modifications, like H3K4me3 and H3K9/16ac, especially near transcription start sites. The H3K9/16ac-enriched genes that overlapped with FAIRE signals (FAIRE-H3K9/14ac) were moderately correlated with gene expression levels. We also identified functional sequence motifs at H3K4me1-enriched FAIRE sites upstream of putative promoters, suggesting that regulatory elements could be associated with H3K4me1 to be regarded as distal regulatory elements. Our results might provide an insight into epigenetic regulatory mechanisms explaining the association of histone modifications with open chromatin structure in breast cancer cells.

Epigenetic Mechanisms of Depression: Role of Histone Modification and DNA Methylation in BDNF Gene (우울증의 후성유전기전: BDNF 유전자의 히스톤 변형 및 DNA 메틸화의 역할)

  • Park, Sung Woo
    • Journal of Life Science
    • /
    • 제28권12호
    • /
    • pp.1536-1544
    • /
    • 2018
  • Depression is a common, serious, and recurring mental disorder. The pathogenesis of depression involves many factors such as environmental factor, genetic factor and alteration of structure and function in neurobiological systems. Increasing evidence supports that epigenetic alteration may be associated with depression. The epigenetics is explained as the mechanisms by which environmental factor causes changes in chromatin structure and alters gene expression without changing DNA base sequence. DNA methylation and histone modification involving histone acetylation and methylation are the main epigenetic mechanisms. Animal studies have shown that stressful environment such as early life stress can leave persistent epigenetic marks in the genome, which alter gene expression and influence neural and behavioral function through adulthood. A potentially important gene in depression is brain-derived neurotrophic factor (BDNF). BDNF plays a central role in depression and antidepressant action. In studies of the rodent, exposure to stress at prenatal, postnatal, and adult stages alters BDNF expression through histone modification and DNA methylation of the BDNF gene which results in anxiety and depressive-like behavior. This review discusses recent advances in the study of the epigenetic mechanisms that contribute to depression, particularly histone modification and DNA methylation of the BDNF gene, that may help in the development of new targets for depression treatment.

Epigenetic modification is linked to Alzheimer's disease: is it a maker or a marker?

  • Lee, Jung-Hee;Ryu, Hoon
    • BMB Reports
    • /
    • 제43권10호
    • /
    • pp.649-655
    • /
    • 2010
  • Alzheimer's disease (AD) is the most common age-dependent neurodegenerative disorder and shows progressive memory loss and cognitive decline. Intraneuronal filaments composed of aggregated hyperphosphorylated tau protein, called neurofibrillary tangles, along with extracellular accumulations of amyloid $\beta$ protein (A$\beta$), called senile plaques, are known to be the neuropathological hallmarks of AD. In light of recent studies, epigenetic modification has emerged as one of the pathogenic mechanisms of AD. Epigenetic changes encompass an array of molecular modifications to both DNA and chromatin, including transcription factors and cofactors. In this review, we summarize how DNA methylation and changes to DNA chromatin packaging by post-translational histone modification are involved in AD. In addition, we describe the role of SIRTs, histone deacetylases, and the effect of SIRT-modulating drugs on AD. Lastly, we discuss how amyloid precursor protein (APP) intracellular domain (AICD) regulates neuronal transcription. Our understanding of the epigenomes and transcriptomes of AD may warrant future identification of novel biological markers and beneficial therapeutic targets for AD.

Zinc and Its Transporters in Epigenetics

  • Brito, Sofia;Lee, Mi-Gi;Bin, Bum-Ho;Lee, Jong-Soo
    • Molecules and Cells
    • /
    • 제43권4호
    • /
    • pp.323-330
    • /
    • 2020
  • Epigenetic events like DNA methylation and histone modification can alter heritable phenotypes. Zinc is required for the activity of various epigenetic enzymes, such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), histone deacetylases (HDACs), and histone demethylases, which possess several zinc binding sites. Thus, the dysregulation of zinc homeostasis can lead to epigenetic alterations. Zinc homeostasis is regulated by Zinc Transporters (ZnTs), Zrt- and Irt-like proteins (ZIPs), and the zinc storage protein metallothionein (MT). Recent advances revealed that ZIPs modulate epigenetics. ZIP10 deficiency was found to result in reduced HATs, confirming its involvement in histone acetylation for rigid skin barrier formation. ZIP13 deficiency, which is associated with Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS), increases DNMT activity, leading to dysgenesis of dermis via improper gene expressions. However, the precise molecular mechanisms remain to be elucidated. Future molecular studies investigating the involvement of zinc and its transporters in epigenetics are warranted.

Alterations in Acetylation of Histone H4 Lysine 8 and Trimethylation of Lysine 20 Associated with Lytic Gene Promoters during Kaposi's Sarcoma-Associated Herpesvirus Reactivation

  • Lim, Sora;Cha, Seho;Jang, Jun Hyeong;Yang, Dahye;Choe, Joonho;Seo, Taegun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.189-196
    • /
    • 2017
  • Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with formation of Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Replication and transcription activator (RTA) genes are expressed upon reactivation of KSHV, which displays a biphasic life cycle consisting of latent and lytic replication phases. RTA protein expression results in KSHV genome amplification and successive viral lytic gene expression. Transcriptional activity of viral lytic genes is regulated through epigenetic modifications. In Raji cells latently infected with Epstein-Barr virus, various modifications, such as acetylation and methylation, have been identified at specific lysine residues in histone H4 during viral reactivation, supporting the theory that expression of specific lytic genes is controlled by histone modification processes. Data obtained from chromatin immunoprecipitation and quantitative real-time PCR analyses revealed alterations in the H4K8ac and H4K20me3 levels at lytic gene promoters during reactivation. Our results indicate that H4K20me3 is associated with the maintenance of latency, while H4K8ac contributes to KSHV reactivation in infected TREx BCBL-1 RTA cells.