• Title/Summary/Keyword: Histone deacetylases inhibitor

Search Result 15, Processing Time 0.161 seconds

Histone Deacetylase Inhibitors Induce the Differentiation of Eosinophilic Leukemia EoL-1 Cells into Eosinophils

  • Ishihara Kenji;Hong Jang-Ja;Kaneko Motoko;Takahashi Aki;Sugeno Hiroki;Kang Young-Sook;Ohuchi Kazuo
    • Biomolecules & Therapeutics
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 2006
  • EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells, and induced the expression of markers for mature eosinophils such as integrin ${\beta}7$, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of his tones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.

Histone deacetylases inhibitor and RAD51 recombinase increase transcription activator-like effector nucleases-mediated homologous recombination on the bovine β-casein gene locus

  • Park, Da Som;Kim, Se Eun;Koo, Deog-Bon;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1023-1033
    • /
    • 2020
  • Objective: The efficiency of the knock-in process is very important to successful gene editing in domestic animals. Recently, it was reported that transient loosening of the nucleosomal folding of transcriptionally inactive chromatin might have the potential to enhance homologous recombination efficiency. The objective of this study was to determine whether histone deacetylases (HDAC) inhibitor and RAD51 recombinase (RAD51) expression were associated with increased knock-in efficiency on the β-casein (bCSN2) gene locus in mammary alveolar-large T antigen (MAC-T) cells using the transcription activator-like effector nucleases (TALEN) system. Methods: MAC-T cells were treated with HDAC inhibitors, valproic acid, trichostatin A, or sodium butyrate for 24 h, then transfected with a knock-in vector, RAD51 expression vector and TALEN to target the bCSN2 gene. After 3 days of transfection, the knock-in efficiency was confirmed by polymerase chain reaction and DNA sequencing of the target site. Results: The level of HDAC 2 protein in MAC-T cells was decreased by treatment with HDAC inhibitors. The knock-in efficiency in MAC-T cells treated with HDAC inhibitors was higher than in cells not treated with inhibitors. However, the length of the homologous arm of the knock-in vector made no difference in the knock-in efficiency. Furthermore, DNA sequencing confirmed that the precision of the knock-in was more efficient in MAC-T cells treated with sodium butyrate. Conclusion: These results indicate that chromatin modification by HDAC inhibition and RAD51 expression enhanced the homologous recombination efficiency on the bCSN2 gene locus in MAC-T cells.

Development of radiolabelled histone deacetylase inhibitors for PET imaging study

  • Hee-Kwon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.165-170
    • /
    • 2020
  • Histone Deacetylases (HDACs) are enzymes that have control gene expression regulation and cell state. In additions, inhibitions of HDACs are associated with growth arrest, differentiation, or apoptosis of tumor cell. Thus HDAC inhibition is one of the interesting biological targets. A variety of HDAC inhibitors has been developed by many scientists, and some of chemical structures related with HDAC inhibitors were modified to give radiolabeled HDAC inhibitors for positron emission tomography (PET) study. In this highlight review, the development of radiolabeled HDAC inhibitors for PET study are described.

Histone acetyltransferase inhibitors antagonize AMP-activated protein kinase in postmortem glycolysis

  • Li, Qiong;Li, Zhongwen;Lou, Aihua;Wang, Zhenyu;Zhang, Dequan;Shen, Qingwu W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.857-864
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the influence of AMP-activated protein kinase (AMPK) activation on protein acetylation and glycolysis in postmortem muscle to better understand the mechanism by which AMPK regulates postmortem glycolysis and meat quality. Methods: A total of 32 mice were randomly assigned to four groups and intraperitoneally injected with 5-Aminoimidazole-4-carboxamide1-${\beta}$-D-ribofuranoside (AICAR, a specific activator of AMPK), AICAR and histone acetyltransferase inhibitor II, or AICAR, Trichostatin A (TSA, an inhibitor of histone deacetylase I and II) and Nicotinamide (NAM, an inhibitor of the Sirt family deacetylases). After mice were euthanized, the Longissimus dorsi muscle was collected at 0 h, 45 min, and 24 h postmortem. AMPK activity, protein acetylation and glycolysis in postmortem muscle were measured. Results: Activation of AMPK by AICAR significantly increased glycolysis in postmortem muscle. At the same time, it increased the total acetylated proteins in muscle 45 min postmortem. Inhibition of protein acetylation by histone acetyltransferase inhibitors reduced AMPK activation induced increase in the total acetylated proteins and glycolytic rate in muscle early postmortem, while histone deacetylase inhibitors further promoted protein acetylation and glycolysis. Several bands of proteins were detected to be differentially acetylated in muscle with different glycolytic rates. Conclusion: Protein acetylation plays an important regulatory role in postmortem glycolysis. As AMPK mediates the effects of pre-slaughter stress on postmortem glycolysis, protein acetylation is likely a mechanism by which antemortem stress influenced postmortem metabolism and meat quality though the exact mechanism is to be elucidated.

Histone Deacetylases and their Inhibitors as Potential Therapeutic Drugs for cholangiocarcinoma - Cell Line findings

  • Sriraksa, Ruethairat;Limpaiboon, Temduang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2503-2508
    • /
    • 2013
  • Histone deacetylation mediated by histone deacetylases (HDACs) has been reported as one of the epigenetic mechanisms associated with tumorigenesis. The poor responsiveness of anticancer drugs found with cholangiocarcinoma (CCA) leads to short survival rate. We aimed to investigate mRNA expression of HDACs class I and II, and the effect of HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and valproic acid (VPA), in CCA in vitro. Expression of HDACs was studied in CCA cell lines (M213, M214 and KKU-100) and an immortal cholangiocyte (MMNK1) by semi-quantitative reverse transcription-PCR. SAHA and VPA, as well as a classical chemotherapeutic drug 5 -fluorouacil (5-FU) were used in this study. Cell proliferation was determined by sulforhodamine assay. $IC_{50}$ and $IC_{20}$ were then analyzed for each agent and cell line. Moreover, synergistic potentional of VPA or SAHA in combination with 5-FU at sub toxic does ($IC_{20}$) of each agent was also evaluated. Statistic difference of HDACs expression or cell proliferation in each experimental condition was analyzed by Student's t-test. The result demonstrated that HDACs were expressed in all studied cell types. Both SAHA and VPA inhibited cell proliferation in a dose-dependent manner. Interestingly, KKU-100 which was less senstitive to classical chemotheraoeutic 5-FU was highly was sensitive to HDAC inhibitors. Simultaneous combination of subtoxic doses of HDAC inhibitors and 5-FU signiicantly inhibited cell proliferation in CCA cell lines compared to single sgent treatment($P{\leq}0.01$), while sequentially combined treatments were less effective. The present study showed inhibitory effects of HDACIs on cell proliferation in CCA cell lines, with synergistic antitumor potential demonstrated by simultaneous combination of VPA or SAHA with 5-FU, suggesting a novel alternative therapeutic strategy in effective treatment of CCA.

Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

  • Lee, Eunjo;Song, Min-ji;Lee, Hae-Ahm;Kang, Seol-Hee;Kim, Mina;Yang, Eun Kyoung;Lee, Do Young;Ro, Seonggu;Cho, Joong Myung;Kim, Inkyeom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.477-485
    • /
    • 2016
  • CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

Induction of Apoptosis by HDAC Inhibitor Trichostatin A through Activation of Caspases and NF-κB in Human Prostate Epithelial Cells. (인체 전립선 상피세포에서 HDAC 저해제 trichostatin A의 caspase 및 NF-κB의 활성화를 통한 apoptosis 유도)

  • Park, Cheol;Jin, Cheng-Yun;Choi, Byung-Tae;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.336-343
    • /
    • 2008
  • Histone deacetylases (HDACs) inhibitors have emerged as the accessory therapeutic agents for various human cancers, since they can block the activity of specific HDACs, restore the expression of some tumor suppressor genes and induce cell differentiation, cell cycle arrest and apoptosis in vitro and in vivo. In the present study, we investigated that the effect of trichostatin A (TSA), an HDAC inhibitor, on the cell growth and apoptosis, and its effect on the nuclear factor-kappaB $(NF-{\kappa}B)$ activity in 267B1 human prostate epithelial cells. Exposure of 267B1 cells to TSA resulted in growth inhibition and apoptosis induction in and dose-dependent manners as measured by fluorescence microscopy, agarose gel electrophoresis and flow cytometry analysis. TSA treatment inhibited the levels of IAP family members such as c-IAP-1 and c-IAP-2 and induced the proteolytic activation of caspase-3, -8 and -9, which were associated with concomitant degradation of poly (ADP-ribose)-polymerase, ${\beta}-catenin$ and laminin B proteins. The increase in apoptosis by TSA was connected with the translocation of $NF-{\kappa}B$ from cytosol to nucleus, increase of the DNA binding as well as promoter activity of $NF-{\kappa}B$, and degradation of cytosolic inhibitor of KappaB $(I{\kappa}B)-{\alpha}$ protein. We therefore concluded that TSA demonstrated anti-proliferative and apoptosis-inducing effects on 267B1 cells in vitro, and that the activation of caspases and $NF-{\kappa}B$ may play important roles in its mechanism of action. Although further studies are needed, these findings provided important insights into the possible molecular mechanisms of the anti-cancer activity of TSA.

Anti-Cancer Effect of IN-2001 in T47D Human Breast Cancer

  • Joung, Ki-Eun;Min, Kyung-Nan;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.81-88
    • /
    • 2012
  • Histone deacetylases (HDACs) are enzymes involved in the remodelling of chromatin, and have a key role in the epigenetic regulation of gene expression. Histone deacetylase (HDAC) inhibitors are emerging as an exciting new class of potential anti-cancer agents. In recent years, a number of structurally diverse HDAC inhibitors have been identifi ed and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. However, the underlying molecular mechanisms remain unclear. This study aimed at investigating the anti-tumor activity of various HDAC inhibitors, IN-2001, using T47D human breast cancer cells. Moreover, the possible mechanism by which HDAC inhibitors exhibit anti-tumor activity was also explored. In estrogen receptor positive T47D cells, IN-2001, HDAC inhibitor showed anti-proliferative effects in dose-and time-dependent manner. In T47D human breast cancer cells showed anti-tumor activity of IN-2001 and the growth inhibitory effects of IN-2001 were related to the cell cycle arrest and induction of apoptosis. Flow cytometry studies revealed that IN-2001 showed accumulation of cells at $G_2$/M phase. At the same time, IN-2001 treatment time-dependently increased sub-$G_1$ population, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with induction of cdk inhibitor expression. In T47D cells, IN-2001 as well as other HDAC inhibitors treatment significantly increased $p21^{WAF1}$ and $p27^{KIP1}$ expression. In addition, thymidylate synthase, an essential enzyme for DNA replication and repair, was down-regulated by IN-2001 and other HDAC inhibitors in the T47D human breast cancer cells. In summary, IN-2001 with a higher potency than other HDAC inhibitors induced growth inhibition, cell cycle arrest, and eventual apoptosis in human breast cancer possibly through modulation of cell cycle and apoptosis regulatory proteins, such as cdk inhibitors, cyclins, and thymidylate synthase.

Fission Yeast-based Screening to Identify Putative HDAC Inhibitors Using a Telomeric Reporter Strain

  • Chung, Kyung-Sook;Ahn, Jiwon;Choi, Chung-Hae;Yim, Nam Hui;Kang, Chang-Mo;Kim, Chun-Ho;Lee, Kyeong;Park, Hee-Moon;Song, Kyung-Bin;Won, Misun
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.93-99
    • /
    • 2008
  • Transcriptional silencing is regulated by promoter methylation and histone modifications such as methylation and acetylation. We constructed a Schizosaccaromyces pombe reporter strain, KCT120a, to identify modifiers of transcriptional silencing, by inserting the $ura4^+$ gene into a heterochromatic telomere region. Two compounds inhibited the activity of histone deacetylases, induced acetylation of histone H3 and caused apoptotic cell death in HeLa cells. Expression of gelsolin and $p21^{waf1/cip1}$ also increased, as it does in response to HDAC inhibitors such as TSA. Therefore, these compounds appear to be potent inhibitors of HDACs, and hence potential anti-cancer drugs. Our observations suggest that a yeast cell-based assay system for transcriptional silencing may be useful for identifying histone deacetylase inhibitors and other agents affecting chromatin remodeling.