• Title/Summary/Keyword: Histone deacelylase inhibitor

Search Result 2, Processing Time 0.018 seconds

Trichostatin A, a Histone Deacetylase Inhibitor, Potentiated Cytotoxic Effect of ionizing Radiation in Human Head and Neck Cancer Cell Lines (히스톤탈아세틸효소 억제제 Trichostatin A에 의한 인간 두경부암 셰포주의 방사선 감수성 증강)

  • Kim, Jin Ho;Shin, Jin Hee;Chie, Eui Kyu;Wu, Hong-Gyun;Kim, Jae Sung;Kim, Il Han;Ha, Sung Whan;Park, Charn Il;Kang, Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.138-141
    • /
    • 2004
  • Purpose : We have previously reported that human glioblastoma cells are sensitized to radiation-induced death after their exposure to trichostatin A (TSA), a histone deacetylase inhibitor (HDAC-1), prior to the irradiation. We aimed to measure the magnitude of the radiosensitizing effect of TSA in human head and neck cancer cell lines. Materials and Methods : Human head and neck cancer cell lines, HN-3 and HN-9, were exposed to 0, 50, 100, and 200 nM TSA for 18 hr prior to irradiation. Then, the TSA-treated cells were irradiated with 0, 2, 4, 6, and 8 Gy, and cell survival was measured by clonogenic assay. Results : Pre-irradiation exposure to TSA was found to radiosensitize HN-3 and HN-9 cell lines. In HN-9 cells, the fraction surviving after 2 Gy (SF2) was significantly reduced by treatment of TSA at concentration as low as 50 nM. However, a treatment with 200 nM TSA was required to significantly decrease SF2 in the HN-3 cell line. SER of pre-irradiation treatment with 200 nM TSA was 1.84 in HN-3 and 7.24 in HN-9, respectively. Conclusions : Our results clearly showed that human head and neck cancer cell lines can be sensitized to ionizing radiation by pre-irradiation inhibition of histone deacetylase (HDAC) using TSA, and that this potentiation might well be a general phenomenon.

Leptomycin B Increases Radiosensitization by Trichostain A in HeLa Cells (HeLa세포주에서 Leptomicin B에 의한 Trichostain A의 방사선 감작효과의 증가)

  • Kim, In-An;Kim, Jin-Ho;Shin, Jin-Hee;Kim, Il-Han;Kim, Jae-Sung;Wu-Hong, Gyun;Chie, Eui-Kyu;Kim, Yong-Ho;Kim, Bo-Kyung;Hong, Se-Mie;Ha, Sung-Whan;Park, Chan-Il
    • Radiation Oncology Journal
    • /
    • v.23 no.2
    • /
    • pp.116-122
    • /
    • 2005
  • Purpose: Histone deacetylase inhibitors (HDIs) are emerging as potentially useful components of anticancer therapy and their radiosensitizing effects have become evident. Specific HDAS are now available that preferentially inhibit specific HDAC classes; TSA inhibits Class I and II HDACs, and SK7041 inhibits Class I HDACs. Materials and methods: We tested the differential radiosensitization induced by two different classes of HDIs in HeLa cells. We next tested the hypothesis that p53 expression in cancer cells may influence the susceptibility to HDIs by using pharmacologic modification of the p53 status under an isogenic background. Results: It is interesting that p53 expression in the HeLa cells clearly increased the degree of radio-sensitization by TSA compared to that of the class I specific inhibitor SK7041. This suggests that p53 may, in part, be responsible for the mechanistic role for the greater radiosensitization induced by Class I & II inhibitors compared to that of the class I specific inhibitors. Thus, these studies are useful in distinguishing between events mediated solely by the Class I HDACS versus those events involving the other classes of HDACS as well. Conclusion: The anticancer efficacy of targeting Class I and II HDACS, in conjunction with radiation therapy, may be further enhanced by the restoration of p53 expression.