Leptomycin B Increases Radiosensitization by Trichostain A in HeLa Cells

HeLa세포주에서 Leptomicin B에 의한 Trichostain A의 방사선 감작효과의 증가

  • Kim, In-An (Department of Radiation Oncology, Cancer Research institute, Seoul National University College of Medicine, Department of Radiation Oncology, Seoul National University Bundang Hospital) ;
  • Kim, Jin-Ho (Department of Radiation Oncology, Cancer Research Institute, Seoul National University College of Medicine) ;
  • Shin, Jin-Hee (Department of Radiation Oncology, Cancer Research Institute, Seoul National University College of Medicine) ;
  • Kim, Il-Han (Department of Radiation Oncology, Cancer Research Institute, Institute of Radiation medicine, Seoul National University College of Medicine) ;
  • Kim, Jae-Sung (Department of Radiation Oncology, Cancer Research Institute, Department of Radiation Oncology, Seoul National University Bundang Hospital) ;
  • Wu-Hong, Gyun (Department of Radiation Oncology, Cancer Research Institute, Institute of Radiation medicine, Seoul National University College of Medicine) ;
  • Chie, Eui-Kyu (Department of Radiation Oncology, Cancer Research Institute, Seoul National University College of Medicine) ;
  • Kim, Yong-Ho (Department of Radiation Oncology, Seoul National University College of Medicine, Department of Radiation Oncology, Soonchunhyang University Hospital) ;
  • Kim, Bo-Kyung (Department of Radiation Oncology, Seoul National University College of Medicine, Department of Radiation Oncology, Dankook University Hospital) ;
  • Hong, Se-Mie (Department of Radiation Oncology, Seoul National University College of Medicine, Department of Radiation Oncology, Konkuk University Hospital) ;
  • Ha, Sung-Whan (Department of Radiation Oncology, Institute of Radiation Medicine, Seoul National University College of Medicine) ;
  • Park, Chan-Il (Department of Radiation Oncology, Institute of Radiation Medicine, Seoul National University College of Medicine)
  • 김인아 (서울대학교 의과대학 방사선종양학교실, 암연구소, 분당서울대학병원 방사선종양학과) ;
  • 김진호 (서울대학교 의과대학 방사선종양학교실, 암연구소) ;
  • 신진희 (서울대학교 의과대학 방사선종양학교실, 암연구소) ;
  • 김일한 (서울대학교 의과대학 방사선종양학교실, 암연구소, 의학연구원 방사선의학연구소) ;
  • 김재성 (서울대학교 의과대학 방사선종양학교실, 암연구소, 분당서울대학병원 방사선종양학과) ;
  • 우홍균 (서울대학교 의과대학 방사선종양학교실, 암연구소, 의학연구원 방사선의학연구소) ;
  • 지의규 (서울대학교 의과대학 방사선종양학교실, 암연구소) ;
  • 김용호 (서울대학교 의과대학 방사선종양학교실, 순천향대학교병원 방사선종양학과) ;
  • 김보경 (서울대학교 의과대학 방사선종양학교실, 단국대학교병원 방사선종양학과) ;
  • 홍세미 (서울대학교 의과대학 방사선종양학교실, 건국대학교병원 방사선종양학과) ;
  • 하성환 (서울대학교 의과대학 방사선종양학교실, 의학연구원 방사선의학연구소) ;
  • 박찬일 (서울대학교 의과대학 방사선종양학교실, 의학연구원 방사선의학연구소)
  • Published : 2005.06.01

Abstract

Purpose: Histone deacetylase inhibitors (HDIs) are emerging as potentially useful components of anticancer therapy and their radiosensitizing effects have become evident. Specific HDAS are now available that preferentially inhibit specific HDAC classes; TSA inhibits Class I and II HDACs, and SK7041 inhibits Class I HDACs. Materials and methods: We tested the differential radiosensitization induced by two different classes of HDIs in HeLa cells. We next tested the hypothesis that p53 expression in cancer cells may influence the susceptibility to HDIs by using pharmacologic modification of the p53 status under an isogenic background. Results: It is interesting that p53 expression in the HeLa cells clearly increased the degree of radio-sensitization by TSA compared to that of the class I specific inhibitor SK7041. This suggests that p53 may, in part, be responsible for the mechanistic role for the greater radiosensitization induced by Class I & II inhibitors compared to that of the class I specific inhibitors. Thus, these studies are useful in distinguishing between events mediated solely by the Class I HDACS versus those events involving the other classes of HDACS as well. Conclusion: The anticancer efficacy of targeting Class I and II HDACS, in conjunction with radiation therapy, may be further enhanced by the restoration of p53 expression.

목적: 히스톤탈아세틸화효소 억제제는 그 자체의 항암효과뿐만 아니라 방사선 감작제로서의 효과가 점차분명해져가고 있다. 최근 Class I 특이적인 히스톤탈아세틸화효소 억제제의 개발로 계층 특이적인(Class specific) 연구가 가능해짐에 따라, 본 연구에서는 서로 다른 히스톤탈아세틸화효소억제제의 방사선감작효과를 비교함과 동시에 p53 발현도의 차이가 히스톤탈아세틸화효소억제제의 방사선 감수성에 미치는 영향을 알아보고자 하였다. 대상 및 방법: 이를 위해 p53 발현도가 매우 낮은 HeLa 세포에 p53의 핵 외 수송을 억제하여 세포질 내 분해를 차단하는 Leptomycin B를 처리하여 p53의 발현도를 현저하게 높인 후, Trichostatin와 SK7041의 방사선 민감도를 비교 관찰하였다. 결과: 세포생존곡선, SER 및 SF2를 비교 분석 시, p53의 발현이 높은 Leptomycin B 처리군에서 Trichostatin A가 Class I HDAC만을 억제하는 SK7041에 비해 유의하게 높은 방사선 감작효과를 나타내었다. 이는 p53이 Class I 특이적 억제제인 SK7041과 Class I과 II를 모두 억제하는 TSA의 방사선감작효과에 미치는 영향의 차이에 기전적으로 관여함을 시사한다. 결론: Leptomycln B에 의해 유도된 p53의 발현증가는 Class I과 Class I과 II를 모두 억제하는 TSA의 방사선 감작효과를 증강시킨다.

Keywords

References

  1. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 2000;92:1210-1216 https://doi.org/10.1093/jnci/92.15.1210
  2. Marks PA, Rifkind RA, Richon VM, et al. Histone deacetylases and cancer: Causes and therapies. Nat Rev Cancer 2001;1:194-202 https://doi.org/10.1038/35106079
  3. Marks PA, Jiang X. Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle 2005;25:552-563
  4. Thiagalingam S, Cheng KH, Lee HJ, Minerva NA. Histone deactylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci 2003;983:84-100 https://doi.org/10.1111/j.1749-6632.2003.tb05964.x
  5. Antonelllo Mai, Silvio Massa, Dante Rotili, et al. Histone Deacetylation in Epigenetics: An attractive target for anticancer therapy. Medicinal Research Rev 2005;25:261-309 https://doi.org/10.1002/med.20024
  6. Yang XY, Seto E. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr Opin Genet Nev 2003;13:143-153 https://doi.org/10.1016/S0959-437X(03)00015-7
  7. Gray SG, Ekstrom TJ. The human histone deacetylase family. Exp Cell Res 2001;262:75-83 https://doi.org/10.1006/excr.2000.5080
  8. Grozinger CM, Hassig CA, Schreiber SL. Three proteins define a class of human histone deacetylase related to yeast Hda1p. Proc Natl Acad Sci USA 1999;96:4868-4873 https://doi.org/10.1073/pnas.96.9.4868
  9. Bertos NR, Wang AH, Yang XY. Class II histone deacetylase: Structure, function, and regulation. Biochem Cell Biol 2001;79:243-252 https://doi.org/10.1139/bcb-79-3-243
  10. Fische W, Kiermer V, Dequiedt F, et al. The emerging role of class II histone deactylase. Biochem Cell Biol 2001;79:339-348
  11. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2$\alpha$ promotes cell survival under stress. Cell 2001;107:137-148 https://doi.org/10.1016/S0092-8674(01)00524-4
  12. Vaziri H, Dessain SK, Ng Eaton E, et al. $hSIR2^{SIRT1}$ functions as an NAD-dependent p53 deacetylase. Cell 2001;107:149-159 https://doi.org/10.1016/S0092-8674(01)00527-X
  13. Park JH, Jung Y, Kim TY, et al. Class I histone deacetyalse-selective novel synthetic inhibitors potentially inhibit human tumor proliferation. Clin Cancer Res 2004;10:5271- 5281 https://doi.org/10.1158/1078-0432.CCR-03-0709
  14. Insinga A, Monestiroli S, Ronzoni S, et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of death receptor pathway. Nat Med 2005;11:71-76 https://doi.org/10.1038/nm1160
  15. Nebbiosso A, Clarke N, Voltz E, et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 2005;11:77-84 https://doi.org/10.1038/nm1161
  16. Liu F, Dowling M, Yang XJ, Kao GD. Caspase-mediated specific cleavage of human histone deacetylase 4. J Biol Chem 2004;13:34537-34546 https://doi.org/10.1074/jbc.M402475200
  17. Bakin RE, Jung MO. Cytoplasmic sequestration of HDAC7 from mitochondrial and nuclear compartments upon initiation of apoptosis. J Biol Chem 2004;279:51218-51225 https://doi.org/10.1074/jbc.M409271200
  18. Medina V, Edmonds B, Young GP, James R, Appleton S, Zalewski PD. Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res 1997;57:3697-3707
  19. Kao GD, McKenna WG, Guenther MG, Muschel RJ, Lazar MA, Yen TJ. Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response. J Cell Biol 2003;160:1017-1027 https://doi.org/10.1083/jcb.200209065
  20. Camphausen K, Burgan W, Cerra M, et al. Enhanced radiation-induced cell killing and prolongation of $\gamma$H2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 2004;64:316-321 https://doi.org/10.1158/0008-5472.CAN-03-2630
  21. Camphausen K, Scott T, Sproull M, Tofilon PJ. Enhancement of xenograft radiosenstivity by histone deacetylase inhibitor MS275 and Correlation with histone hyperacetylation. Clin Cancer Res 2004;10:6066-6071 https://doi.org/10.1158/1078-0432.CCR-04-0537
  22. Biade S, Stobbe CC, Boyd JT, Chapman JD. Chemical agents that promote chromatin compaction radiosensitize tumour cells. Int J Radiat Biol 2001;77:1033-1042 https://doi.org/10.1080/09553000110066068
  23. Kim JH, Shin JH, Kim IH. Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor. Int J Radiat Oncol Biol Phys 2004;62:1348-1354
  24. Kim JH, Shin JH, Chie EK, et al. Trichostatin A, a histone deacetylase inhibitor, potentiated cytotoxic effect of inonizing radiation in human head and neck cancer cell lines. J Korean Soc Ther Radiol Oncol 2004:22:138-144
  25. Bristow RG, Benchimol S, Hill RP. The 53 gene as a modifier of intrinsic radiosensitivity: implication for radiotherapy. Radiotherapy and Oncology 1996;40:197-223 https://doi.org/10.1016/0167-8140(96)01806-3
  26. Schwartz JL, Russell KJ. The effect of functional inactivation of TP53 by HPV-E6 transformation on the induction of chromosome aberration by gamma rays in human tumor cells. Radiat Res 1999;151:385-390 https://doi.org/10.2307/3579824
  27. Schwartz JL, Jordan R, Kaufmann WK, et al. Evidence for the expression of radiation-induced petetially lethral damage being a p53-dependent process. Int J Radiat Biol 2000;76:1037-1043 https://doi.org/10.1080/09553000050111505
  28. Kim IA, Yang YJ, Yoon SC, et al. Potential of adenoviral p53 gene therapy and irradiation for the treatment of malignant gliomas. Int J Oncol 2001;19:1041-1047
  29. Roy S, Packman K, Jeffrey R, Tenniswood M. Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells. Cell Death & Differentiation. Advance online publication Mar 2005;cdd4401581 https://doi.org/10.1038/sj.cdd.4401581
  30. Liu L, Scolnick DM, Trievel RC, et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 1999;19:1202-1209 https://doi.org/10.1128/MCB.19.2.1202
  31. Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 2000;408:377-381 https://doi.org/10.1038/35042612
  32. Li M, Luo J, Brooks CL, Gu W. Acetylation of p53 inhibits its ubiquitination by mdm2. J Biol Chem 2002;277:50607-50611 https://doi.org/10.1074/jbc.C200578200
  33. Luo J, Li M, Tang Y, et al. Acetylaton of p53 augments its site-specific DNA bind both in vitro and in vivo. Proc Natl Acad Sci USA 2004;101:2259-2264 https://doi.org/10.1073/pnas.0308762101
  34. Ito A, Lai CH, Zhao X, et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 2001;20:1331-1340 https://doi.org/10.1093/emboj/20.6.1331
  35. Grunstein M. Histone acetylation and chromatin structure and transcription. Nature 1997;389:349-352 https://doi.org/10.1038/38664
  36. Bernstein BT, Tong T, Schreiber S. Genomwide studies of histone deacetylase function in yeast. Proc Natl Acad Sci USA 2000;97:13708-13713 https://doi.org/10.1073/pnas.250477697
  37. Glaser KJ, Li J, Staver RQ, et al. Role of class I and Class II histone deacetylases in carcinoma cells using siRNA. Biochem Biophys Res Comm 2003;310:529-536 https://doi.org/10.1016/j.bbrc.2003.09.043
  38. Henderson C, Mizzau M, Paroni G, Maestro R, Schneider C, Brancolini C. Role of caspases, Bid, and p53 in the apoptotic response triggered by histone deacetylase inhibitors trichostatin-A (TSA) and suberoylanilide hydroxamic acid (SAHA). J Biol Chem 2003;278:12579-12589 https://doi.org/10.1074/jbc.M213093200
  39. Joseph J, Wajapeyee N, Somasundaram K. Role of p53 status in chemosensitivity determination of cancer cells against histone deacetylase inhibitor sodium butyrate. Int J Cancer 2005;115:11-18 https://doi.org/10.1002/ijc.20842
  40. Kudo N, Wolff B, Sekimoto T, et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 1998;242:540-547 https://doi.org/10.1006/excr.1998.4136
  41. Kudo N, Matsumori N, Taoka H, et al. Leptomycin B inactivates CRM1/expotin 1 by covalent modification at a cystein residue in the central conserved region. Proc Natl Acad Sci USA 1999.96:9112-9117 https://doi.org/10.1002/ijc.22591
  42. Lain S, Xirodima D, Lain DP. Accumulating active p53 in the nucleus by inhibition of nuclear export: a novel strategy to promote the p53 tumor suppressor function. Exp Cell Res 1999;253:315-324 https://doi.org/10.1006/excr.1999.4672
  43. Honda R, Tanaka H, Yasuda H. Oncoprotein mdm2 is ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 1997;420:25-27 https://doi.org/10.1016/S0014-5793(97)01480-4
  44. Kubbuttat MH, Jones SN, Vousden KH. Regulation of p53 stability by mdm2. Nature 1997;387:299-303 https://doi.org/10.1038/387299a0
  45. Nakamura S, Roth JA, Mukhopadhyay T. Multiple lysine mutations in the C-terminal domain of p53 interfere with MDM2-dependent protein degradation and ubiquitination. Mol Cell Biol 2000;20:9391-9398 https://doi.org/10.1128/MCB.20.24.9391-9398.2000
  46. Hietanen S, Lain S, Krausz E, et al. Activation of p53 in cervical carcinoma cells by small molecules. Proc Natl Acad Sci USA 2000;97:8501-8506 https://doi.org/10.1073/pnas.97.15.8501
  47. Lain DP, Lain S. Therapeutic exploration of the p53 pathway. Trends Mol Med 2002;8:S38-S42 https://doi.org/10.1016/S1471-4914(01)02221-3
  48. Liang SH, Clarke MF. Regulation of p53 localization. Eur J Biochem 2001;268:2779-2783 https://doi.org/10.1046/j.1432-1327.2001.02227.x