히스토그램은 컬러공간의 특징 때문에 조명에 매우 민감하며, 이동된 빛의 강도를 가지고 있을때 유사성을 떨어뜨릴 가능성이 커지기 때문에, 본 논문에서는 히스토그램의 영역을 몇 개의 영역으로, 나눠, 그 영역들을 계산하는 HAC(Histogram Area Calculation)라 불리는 새로운 검색 방법을 소개한다. 제안한 방식은 현재 히스토그램이 가지고 있는 특성에 기반하여 히스토그램의 영역을 계산하고, 유사성을 매칭시킴으로써 명암도 변화에 대해서, 기존의 다른 전통적인 히스토그램 방법이나, 병합된 히스토그램 방법보다 제안한 방식의 성능이 훨씬 뛰어나다는 것을 보여준다.
본 논문은 컬러공간 특성을 이용하여 유해동영상을 식별하는 알고리즘을 개발하고, 실험을 통하여 알고리즘의 효율성을 검증한다. 유해동영상 식별 알고리즘은 2차원 투영맵에 기초하고 있다. 비디오 이미지의 컬러특성을 추출하는데 있어 2차원 투영맵은 후보 프레임을 효과적으로 추출하는데 적용되어진다. 본 연구에서는 제시된 유사도 계산 알고리즘을 이용하여 추출된 프레임과 기준 이미지 간의 유사도를 먼저 계산하고, 유사도 평가를 통하여 유해동영상 후보프레임을 식별해 내고 임계치를 적용하여 최종 판단을 내린다. 제시된 알고리즘을 적용한 실험결과, 유해동영상을 찾는데 있어 컬러히스토그램보다 본 연구에서 제안한 2차원 투영맵을 이용한 기법이 계산속도와 식별능력 면에서 더 우수함을 입증하였다.
Journal of information and communication convergence engineering
/
제11권1호
/
pp.62-68
/
2013
This paper proposes a method for identification of harmful video images based on the degree of harmfulness in the video content. To extract harmful candidate frames from the video effectively, we used a video color extraction method applying a projection map. The procedure for identifying the harmful video has five steps, first, extract the I-frames from the video and map them onto projection map. Next, calculate the similarity and select the potentially harmful, then identify the harmful images by comparing the similarity measurement value. The method estimates similarity between the extracted frames and normative images using the critical value of the projection map. Based on our experimental test, we propose how the harmful candidate frames are extracted and compared with normative images. The various experimental data proved that the image identification method based on the 2-dimensional projection map is superior to using the color histogram technique in harmful image detection performance.
본 논문에서는 반도체 산업 영상에서 반도체의 결함 원인 진단 기법을 제안한다. 제안 기법은 먼저 결함 영상에 대한 특징 데이터베이스를 구축한다. 다음으로 결함 영상과 입력 영상을 블록 단위로 영역 분할을 수행한 후 컬러 히스토그램을 계산하여 블록들 사이의 히스토그램 카이 제곱 거리를 이용한 블록 유사성을 측정한다. 다음으로 각 영상에서 탐색된 블록들에 대하여 클러스터링을 수행하여 영역을 연결된 객체 단위로 군집한다. 마지막으로 각 클러스터들의 특징을 추출하여 클러스터 간 유사성 측정으로 가장 유사성이 높은 결함 영상을 특징 DB에서 탐색하여 결함 원인 정보와 함께 제시한다. 검색 결과 유사도 상위 n개의 영상 중에서 입력 영상과 동일한 범주의 결함을 갖는 영상이 검색되는 비율을 구하여 제안 기법의 정확성을 검증하였다. n = 1, 2, 3에 대해서 결함 범주에 상관없이 검색 정확도는 모두 100%로 제안 기법은 실제 산업 응용이 가능한 정확한 검색 결과를 보여주었다.
In this paper we propose a content-based image retrieval method that can search large image databases efficiently by color, texture, and shape content. Quantized RGB histograms and the dominant triple (hue, saturation, and value), which are extracted from quantized HSV joint histogram in the local image region, are used for representing global/local color information in the image. Entropy and maximum entry from co-occurrence matrices are used for texture information and edge angle histogram is used for representing shape information. Relevance feedback approach, which has coupled proposed features, is used for obtaining better retrieval accuracy. Simulation results illustrate the above method provides 77.5 percent precision rate without relevance feedback and increased precision rate using relevance feedback for overall queries. We also present a new indexing method that supports fast retrieval in large image databases. Tree structures constructed by k-means algorithm, along with the idea of triangle inequality, eliminate candidate images for similarity calculation between query image and each database image. We find that the proposed method reduces calculation up to average 92.9 percent of the images from direct comparison.
본 논문에서는 새로운 주요객체 자동추출 알고리즘을 제안한다. 제안된 알고리즘은 크게 2단계 과정으로 요약될 수 있다. 1단계로 객체와 배경을 분리하는 영상분할 작업을 수행한다. 우선적으로 '인간은 3또는 4개의 주요 색상으로 축약하여 사물을 인식한다'는 연구 결과에 따라 K-means 알고리즘을 이용하여 3구역으로 분할하고, 분할된 영상 간 히스토그램 유사도를 계산하여 임계값 이상으로 유사하면 병합하는 과정을 수행한다. 2단계로 영상구도에 근거해 분할된 영상 중에 객체라고 지정하는 작업을 수행한다. 사람이 사진을 잘 찍기 위해서는 '주요객체의 위치를 영상구도에 맞추어 촬영하는 것이 바람직하다는 사실'에 근거하여 삼각구도를 바탕으로 가중치 마스크를 설계하여 객체위치를 역 추정하였다. 제안된 방법의 우수성을 보이기 위해 약 400개의 영상에 대해 실험하였으며, 최근에 발표된 KMCC, GBIS방법과도 비교하였다.
볼록총채벌레는 최근 감귤원 해충 피해의 주요 해충으로 인식되어 주기적인 예찰이 이루어지고 있으나 성충의 크기가 0.8mm 정도로 작아 육안 식별에 어려움이 있다. 본 논문에서는 예찰 트랩에 포집된 볼록총채벌레를 자동으로 판별하기 위한 후보 영역 검출 방법을 제안하였다. 본 논문에서 사용한 방법은 히스토그램 기반의 템플릿 매칭으로 그레이 이미지와 그레디언트 이미지를 합성한 이미지를 사용하였다. 50 배율의 광학 현미경으로 영상을 획득 하였고, 제안한 방법의 객관적인 성능 판별을 위해 기존 방법[8]과 노이즈 제거 이미지를 이용한 히스토그램 기반 템플릿 매칭방법 그리고 그레디언트 이미지를 이용한 히스토그램 기반 템플릿 매칭 방법들과 비교 실험을 하였다. 실험결과 본 논문에서 제안한 방법이 기존 전처리[8] 방법 보다 약 14.42% 향상된 성능을 보였고, 노이즈 제거 이미지를 이용한 방법보다 41.63%, 그레디언트 이미지를 이용한 방법보다 21.17% 높은 성능을 보였다.
In this paper, we present the detection method of moving objects based on two background models. These background models support to understand multi layered environment belonged in images taken by shaking camera and each model is MBM(Multiple Background Model) and TMBM (Temporal Median Background Model). Because two background models are Pixel-based model, it must have noise by camera movement. Therefore correlation coefficient calculates the similarity between consecutive images and measures camera motion vector which indicates camera movement. For the calculation of correlation coefficient, we choose the selected region and searching area in the current and previous image respectively then we have a displacement vector by the correlation process. Every selected region must have its own displacement vector therefore the global maximum of a histogram of displacement vectors is the camera motion vector between consecutive images. The MBM classifies the intensity distribution of each pixel continuously related by camera motion vector to the multi clusters. However, MBM has weak sensitivity for temporal intensity variation thus we use TMBM to support the weakness of system. In the video-based experiment, we verify the presented algorithm needs around 49(ms) to generate two background models and detect moving objects.
파노라마 영상은 카메라 시야각의 제한을 극복할 수 있으므로 로봇 비전, 스테레오 카메라, 보안 감시 등의 분야에서 효율적으로 연구되고 있다. 파노라마 영상은 사람의 시야각 이상의 넓은 화각을 가진 영상을 구현할 수 있으며 시야각의 현장감을 중심으로 실제로 현장에 있는 듯한 실감 공간을 제공하는 기술이다. 영상에서 기하학적 변화에 강인한 특징점 및 대응점을 검출하고 호모그래피 행렬을 추정하는데 있어서 모든 대응점을 사용하면 연산량이 많아지고 정확한 호모그래피 행렬을 추정하기 어렵다. 따라서 본 논문에서는 전처리 과정에서 입력 영상들의 히스토그램을 비교 분석하여 유사도가 높은 중첩되는 영역을 추정하며 특징점을 검출하기 위해 SURF 알고리즘을 사용하였다. 또한 영상을 입력하는 순서를 해결하여 순서에 제약 없이 영상을 입력하여 파노라마를 생성할 수 있도록 하였다.
ConeBeam Computed Tomography (CBCT) 영상을 기반으로 한 선량계산에서는 Fanbeam Computed Tomography (FBCT)와 비교하여 산란에 의한 영향이 크고 그 양상이 다양하게 나타나 오차의 주요한 요인으로 작용하는 것으로 알려져 있다. 본 논문에서는 골반 방사선 치료에서 산란이 CBCT 기반으로 한 선량계산에 미치는 영향을 평가하여 오차를 최소화 할 수 있는 조건에 대하여 연구하였다. 다양한 산란조건에서의 CBCT 영상 취득을 위하여 전자밀도 교정용 팬텀에 크기가 각기 다른 산란물질을 추가하여 "산란부족", "산란과다", 그리고 "산란충분"의 3가지 조건을 정하였다. 산란조건에서 취득된 CBCT 영상에서 팬텀 중심부와 주변부의 위치에 따른 CT number값의 차이와 분포를 분석하여 균질도를 평가하였으며 FBCT 영상 기반의 선량 분포를 기준으로 하여 다양한 산란조건에서의 전자밀도 교정관계를 적용하였을 때 팬텀 및 전립선암 환자 5명의 CBCT 영상에서 계산된 선량분포의 감마합격률 및 상대적 오차를 구하였다. 팬텀 CBCT 영상에 대한 CT number들의 히스토그램에서의 분포에서 물 등가 물질에 해당하는 피크의 폭(FWHM)은 산란부족(685 HU)이나 산란과다(264 HU)보다 산란충분(146 HU)의 조건에서 가장 작게 나타나 균질도가 제일 좋은 것으로 평가되었고 팬텀의 중심부와 주변부에서 동일 성분에 대한 CT number의 차이 역시 같은 결과를 나타내었다. 또한 팬텀의 CBCT 영상을 취득할 때와 동일한 산란조건에서의 교정조건을 적용한 경우 선량계산이 가장 정확하였으며 산란충분의 교정곡선 조건을 적용하였을 때 5명의 전립선암환자(평균 등가지름 27.2 cm)의 CBCT 영상 기반의 선량분포는 FBCT의 경우와 대비하여 1%/3 mm의 감마지표에서 감마합격률 98% 이상을 나타내었다. 이때 FBCT 선량에 대한 CBCT 선량오차는 처방선량 대비 2% 이하(평균 0.2%, -1.3%~1.6%)로 평가되었다. CBCT 골반 촬영을 할 때 일반적인 성인 골반의 원통 등가지름(ECD, Equivalent Cylindrical Diameter)의 산란조건에서 동일 성분에 대한 HU 값이 가장 균질하게 나타나 골반 촬영모드가 최적화되었음을 확인하였으며 일반적인 골반부위와 ECD가 유사한 산란조건, 즉 산란충분조건에서 취득된 전자밀도 교정관계를 적용하여 골반 CBCT 기반에서 선량을 계산하였을 때 최적의 선량 정확성을 확보할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.