• Title/Summary/Keyword: Histogram methods

Search Result 569, Processing Time 0.022 seconds

A Study on Edge Detection using Modified Histogram Equalization (변형된 히스토그램 평활화를 적용한 에지 검출에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1221-1227
    • /
    • 2015
  • Edge detection is one of the important technologies to simplify images in the text, lane and object recognition implementation process, and various studies are actively carried out at home and abroad. Existing edge detection methods include a method to detect edge by applying directional gradient masks in spatial space, and a mathematical morphology-based edge detection method. These existing detection methods show insufficient edge detection results in excessively dark or bright images. In this regard, to complement these drawbacks, we proposed an algorithm using the Sobel and histogram equalization among the existing methods.

Global Contrast Enhancement Using Block based Local Contrast Improvement (블록기반 지역 명암대비 개선을 통한 전역 명암대비 향상 기법)

  • Kim, Kwang-Hyun;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.1
    • /
    • pp.15-24
    • /
    • 2008
  • This paper proposes a scheme of global image contrast enhancement using local contrast improvement. Methods of global image contrast enhancement redistribute the image gray level distribution using histogram equalization without considering image properties, and cause the result image to include image pixels with excessive brightness. On the other hand, methods of the block-based local image contrast enhancement have blocking artifacts and a problem of eliminating important image features during an image process to reduce them. In order to solve these problems, the proposed method executes the block-based histogram equalization on temporary images that an input image is divided into various fixed-size blocks. And then it performs the global contrast enhancement by applying the global histogram equalization functions to the original input image. Since the proposed method selects the best histogram equalization function from temporary images that are improved by the block-based local image contrast enhancement, it has the advantages of both the local and global image contrast enhancement approaches.

Weighted Histogram Equalization Method adopting Weber-Fechner's Law for Image Enhancement (이미지 화질개선을 위한 Weber-Fechner 법칙을 적용한 가중 히스토그램 균등화 기법)

  • Kim, Donghyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4475-4481
    • /
    • 2014
  • A histogram equalization method have been used traditionally for the image enhancement of low quality images. This uses the transformation function, which is a cumulative density function of an input image, and it has mathematically maximum entropy. This method, however, may yield whitening artifacts. This paper proposes the weighted histogram equalization method based on histogram equalization. It has Weber-Fechner's law for a human's vision characteristics, and a dynamic range modification to solve the problem of some methods, which yield a transformation function, regardless of the input image. Finally, the proposed transformation function was calculated using the weighted average of Weber-Fechner and the histogram equalization transformation functions in a modified dynamic range. The simulation results showed that the proposed algorithm effectively enhances the contrast in terms of the subjective quality. In addition, the proposed method has similar or higher entropy than the other conventional approaches.

Multiple Pedestrians Tracking using Histogram of Oriented Gradient and Occlusion Detection (기울기 히스토그램 및 폐색 탐지를 통한 다중 보행자 추적)

  • Jeong, Joon-Yong;Jung, Byung-Man;Lee, Kyu-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.812-820
    • /
    • 2012
  • In this paper, multiple pedestrians tracking system using Histogram of Oriented Gradient and occlusion detection is proposed. The proposed system is applicable to Intelligent Surveillance System. First, we detect pedestrian in a image sequence using pedestrian's feature. To get pedestrian's feature, we make block-histogram using gradient's direction histogram based on HOG(Histogram of Oriented Gradient), after that a pedestrian region is classified by using Linear-SVM(Support Vector Machine) training. Next, moving objects are tracked by using position information of the classified pedestrians. And we create motion trajectory descriptor which is used for content based event retrieval. The experimental results show that the proposed method is more fast, accurate and effective than conventional methods.

Maximum-Entropy Image Enhancement Using Brightness Mean and Variance (영상의 밝기 평균과 분산을 이용한 엔트로피 최대화 영상 향상 기법)

  • Yoo, Ji-Hyun;Ohm, Seong-Yong;Chung, Min-Gyo
    • Journal of Internet Computing and Services
    • /
    • v.13 no.3
    • /
    • pp.61-73
    • /
    • 2012
  • This paper proposes a histogram specification based image enhancement method, which uses the brightness mean and variance of an image to maximize the entropy of the image. In our histogram specification step, the Gaussian distribution is used to fit the input histogram as well as produce the target histogram. Specifically, the input histogram is fitted with the Gaussian distribution whose mean and variance are equal to the brightness mean(${\mu}$) and variance(${\sigma}2$) of the input image, respectively; and the target Gaussian distribution also has the mean of the value ${\mu}$, but takes as the variance the value which is determined such that the output image has the maximum entropy. Experimental results show that compared to the existing methods, the proposed method preserves the mean brightness well and generates more natural looking images.

Perception-Based Tone Mapping Technique for Rendering HDR Image Using Histogram Modification (히스토그램 변형을 이용한 HDR 영상 렌더링을 위한 인지기반 톤 맵핑 기법)

  • Kim, Wonkyun;Ha, Changwoo;Jeong, Jechang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.919-927
    • /
    • 2013
  • In this paper, we present a perception-based tone mapping technique using histogram modification for displaying high dynamic range image. HDR (high dynamic range) tone mapping algorithms are used to display HDR image on LDR (low dynamic rnage) devices. Although perception-based tone mapping methods provides better performance, it dose not always produce good results for a wide variety of images. The proposed method reduces dynamic range by using the perception-based tone mapping function and histogram modification. A derivative of perception-based tone mapping function is used as constraint function of histogram and additional compensation process is performed. This method not only improves contrast by adopting different constraints on each pixel value, but also preserves more visual details. In order to prevent over enhancement, histogram modification technique is applied. Furthermore, it can control the rate of image contrast using control parameters. Subjective and objective evaluations show that proposed algorithm is better than existing algorithms.

Content-based image retrieval using adaptive representative color histogram and directional pattern histogram (적응적 대표 컬러 히스토그램과 방향성 패턴 히스토그램을 이용한 내용 기반 영상 검색)

  • Kim Tae-Su;Kim Seung-Jin;Lee Kuhn-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.119-126
    • /
    • 2005
  • We propose a new content-based image retrieval using a representative color histogram and directional pattern histogram that is adaptive to the classification characteristics of the image blocks. In the proposed method the color and pattern feature vectors are extracted according to the characteristics o: the block classification after dividing the image into blocks with a fixed size. First, the divided blocks are classified as either luminance or color blocks depending on the saturation of the block. Thereafter, the color feature vectors are extracted by calculating histograms of the block average luminance co-occurrence for the luminance block and the block average colors for the color blocks. In addition, block directional pattern feature vectors are extracted by calculating histograms after performing the directional gradient classification of the luminance. Experimental results show that the proposed method can outperform the conventional methods as regards the precision and the size of the feature vector dimension.

Local Histogram Equalization using Illumination Information (광원 정보를 이용한 지역 히스토그램 평활화 방법)

  • Kang, Hee;Song, Ki Sun;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.155-164
    • /
    • 2014
  • Local histogram equalization is one of the most popular ways of enhancing the local brightness features of an input image. However, local histogram equalization reveals some problems. First, undesired artifacts are produced by over-enhancing the local features. Second, the enhancement of local features does not always result in global contrast enhancement. To cope with these problems, we propose an illumination driven local histogram equalization method. First, to estimate the illumination information, the proposed method combines the input image and the blurred image produced through the process of the down-sampling and the up-sampling. Next, the proposed method adaptively adjusts the mapping function estimated by the local histogram equalization using the information of the illumination. As a result, the proposed illumination information driven local histogram equalization method simultaneously enhances the global and the local contrast levels while preventing any local artifacts. Experimental results show that the proposed algorithm outperforms the conventional methods on objective and subjective criteria.

Histogram Modification based on Additive Term and Gamma Correction for Image Contrast Enhancement (영상의 대비 개선을 위한 추가 항과 감마 보정에 기반한 히스토그램 변형 기법)

  • Kim, Jong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1117-1124
    • /
    • 2018
  • Contrast enhancement plays an important role in various computer vision systems, since their usability can be improved with visibility enhancement of the images affected by weather and lighting conditions. This paper introduces a histogram modification algorithm that reflects the properties of original images in order to eliminate the saturation effect and washed-out of image details due to the over-enhancement. Our method modifies the original histogram so that an additive term fill histogram pits and the gamma correction suppresses histogram spikes. The parameters for the additive term and gamma correction are adjusted automatically according to statistical properties of the images. Experimental results for various low contrast and hazy images demonstrate that the proposed contrast enhancement improves visibility and reduces haze components effectively, while preserving the characteristics of original images, than the conventional methods.

Content-based Image Retrieval Using Object Region With Main Color (주 색상에 의한 객체 영역을 이용한 내용기반 영상 검색)

  • Kim Dong Woo;Chang Un Dong;Kwak Nae Joung;Song Young Jun
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.44-50
    • /
    • 2006
  • This study has proposed a method of content-based image retrieval using object region in order to overcome disadvantages of existing color histogram methods. The existing color histogram methods have a weak point of reducing accuracy, because these have both a quantization error and an absence of spatial information. In order to overcome this problem, we convert a color information to a HSV space, quantize hue factor being pure color information, and calculate histogram. And then we use hue for retrieval feature that is robust in brightness, movement, and rotation. To solve the problem of the absence of spatial information, we select object region in terms of color feature and region correlation. And we use both the edge and the DC in the selected region for retrieving. As a result of experiment with 1,000 natural color images, the proposed method shows better precision and recall than the existing methods.

  • PDF