Content-based image retrieval using adaptive representative color histogram and directional pattern histogram

적응적 대표 컬러 히스토그램과 방향성 패턴 히스토그램을 이용한 내용 기반 영상 검색

  • Kim Tae-Su (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kim Seung-Jin (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Lee Kuhn-Il (School of Electrical Engineering and Computer Science, Kyungpook National University)
  • 김태수 (경북대학교 전자전기컴퓨터학부) ;
  • 김승진 (경북대학교 전자전기컴퓨터학부) ;
  • 이건일 (경북대학교 전자전기컴퓨터학부)
  • Published : 2005.07.01

Abstract

We propose a new content-based image retrieval using a representative color histogram and directional pattern histogram that is adaptive to the classification characteristics of the image blocks. In the proposed method the color and pattern feature vectors are extracted according to the characteristics o: the block classification after dividing the image into blocks with a fixed size. First, the divided blocks are classified as either luminance or color blocks depending on the saturation of the block. Thereafter, the color feature vectors are extracted by calculating histograms of the block average luminance co-occurrence for the luminance block and the block average colors for the color blocks. In addition, block directional pattern feature vectors are extracted by calculating histograms after performing the directional gradient classification of the luminance. Experimental results show that the proposed method can outperform the conventional methods as regards the precision and the size of the feature vector dimension.

본 논문에서는 영상의 블록 분류 특성에 적응적인 대표 컬러 히스토그램 (representative color histogram)과 방향성 패턴 히스토그램 (directional pattern histogram)을 이용한 새로운 내용 기반 영상 검색 방법 (content-based image retrieval)을 제안한다. 제안한 방법에서는 영상을 일정한 크기의 블록으로 나누고, 분할된 블록의 분류 특성에 따라 컬러와 패턴 특징 벡터를 추출한다. 먼저 분할된 블록을 채도 (saturation)에 따라 휘도 블록 또는 컬러 블록으로 분류한 후, 휘도 블록에 대해서는 블록 평균휘도 쌍의 히스토그램을 구하고, 컬러 블록에 대해서는 블록 평균 컬러 쌍 히스토그램을 구함으로써 블록 분류 특징에 따라 컬러 특징 벡터를 추출한다. 또한 블록 휘도 변화의 기울기 (gradient)를 계산하여 방향성 분류를 행한 후 히스토그램을 계산함으로써 블록 방향성 패턴 특징을 추출한다. 본 논문에서 제안한 영상 검색 방법의 성능을 평가하기 위해서 컴퓨터 모의실험을 행한 결과 제안한 방법이 기존의 방법들보다 정확도 (precision) 및 특징 벡터 차원 (feature vector dimension) 크기 등의 객관적인 측면에서 우수함을 확인하였다.

Keywords

References

  1. M. J. Swain and D. H. Ballard,' Color Indexing,' International Journal of Computer Vision, vol. 7, no. 1, pp.11-32, 1991 https://doi.org/10.1007/BF00130487
  2. J. Huang, S. R. Kumar, M. Mitra, Wei-Jing Zhu, and R. Zabih, 'Image indexing using color correlegram,' Proc. CVPR97, pp. 762-768, June 1997
  3. Guoping Qiu, 'Color image indexing using BTC, ' IEEE Trans. Image Processing, vol. 12, no. 1, pp. 93-101, Jan. 2003 https://doi.org/10.1109/TIP.2002.807356
  4. H. Nezamabadi-pour and E. Kabir, 'Image retrieval using histograms of uni-color and bi-color blocks and directional changes in intensity gradient,' Pattern Recogn Lett., vol. 25, no. 14, pp. 1547-1557, Oct. 2004 https://doi.org/10.1016/j.patrec.2004.05.019
  5. Young Rui and Thoas S. Hang, Shih-Fu Chang 'Image Retrieval: Current techniques, promising directions, and open issues,' Journal of Visual Communication and Image Representation, vol. 10, pp. 39-62, 1999 https://doi.org/10.1006/jvci.1999.0413
  6. J. Z. Wang, Jia Li, and Gio Wiederhold, SIMPLIcity: semantics-integrated matching for picture libraries,' IEEE Trans. Pattern Anal. and Machine Intell., vol. 23, no. 9, pp. 947-963, Sep. 2001 https://doi.org/10.1109/34.955109
  7. D. Chen and A. C. Bovik, 'Visual pattern image coding,' IEEE Trans. Commun., vol. 38, no. 12, pp. 2137-2146, Dec. 1990 https://doi.org/10.1109/26.64656
  8. A. Mojsilovic, H. Hu, and E. Soljanin, Extraction of perceptually important colors and similarity measurement for image matching, retrieval, and analysis,' IEEE Trans. Image Processing, vol. 11, no. 11, pp. 1238-1248, Nov. 2002 https://doi.org/10.1109/TIP.2002.804260
  9. Thomas Sikora, 'The MPEG-7 visual standard for content description-an overview,' IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 6, pp. 696-702, June 2001 https://doi.org/10.1109/76.927422
  10. M. Mirmehdi and R. Perissamy, 'Perceptual image indexing and retrieval,' J. Vis. Commun. Image Represent, vol. 13, no. 4, pp. 460-475, Dec. 2002 https://doi.org/10.1006/jvci.2002.0506
  11. Y. A Aslandogan and C. T. Yu, 'Techniques and systems for image and video retrieval,' IEEE Trans. Knowl. Data Eng., vol. 11, no. 1, pp. 56-63, Jan.-Feb. 1999 https://doi.org/10.1109/69.755615
  12. S. Sural, G. Quin, and S. Pramanic, 'Segmentation and histogram generation using the HSV color space for image retrieval,' Proc. of ICIP, vol. 2, no. 2, pp. 589-592, Nov. 2002 https://doi.org/10.1109/ICIP.2002.1040019
  13. D. K. Park, Y. S. Jeon, C. S. Won, S. J. Park, and S. J. Yoo, 'A composite histogram for image retrieval,' Proc of ICME, vol. 1, pp. 355-358, Jul.-Aug. 2000 https://doi.org/10.1109/ICME.2000.869614