히스토그램 평활화는 영상의 밝기 값 분포가 한 곳에 밀집되어 있는 경우, 출력영상의 밝기 값 범위가 지나치게 확장되어 시각적으로 부자연스러운 결과를 초래하는 단점을 가지고 있다. 그런데 감마변환은 이런 부자연스러운 현상을 비선형적 변환을 통해 보정해주는 성질을 가지고 있다. 따라서 본 논문에서는 감마변환의 이런 성질을 이용하여 영상의 화질을 개선하는 새로운 히스토그램 평활화 방법을 제안한다. 제안 방법은 먼저, 입력영상의 평균 밝기 값을 이용하여 적절한 감마변환 식을 도출하고, 입력영상의 CDF(Cumulative Distribution Function)를 도출된 감마변환 식과 선형 결합하여 새로운 CDF를 생성한 후, 새롭게 변형된 CDF를 사용하여 히스토그램 평활화를 수행한다. 실험결과 제안방법이 기존방법들에 비해 entropy, UIQ, SSIM 등과 같은 정량적 평가에서 좋은 성능을 보였고, 시각적 관점에서도 자연스럽게 화질을 개선하였다.
잡음환경에서의 음성인식 성능향상을 위해서는 서로 다른 잡음환경으로 인한 mismatch를 줄이는 것이 중요하다. 이를 위해 계산이 간단하고 잡음환경에서 비교적 우수한 성능을 내고 있는 스펙트럼 차감법이 널리 사용되고 있다. 본 논문에서는 스펙트럼 차감법을 적용하기 위한 잡음 스펙트럼 추정방법으로 히스토그램 처리방법을 도입한다. 히스토그램 처리방법은 음성이 아닌 구간의 검출이 필요없으며 시간에 따라 변화하는 시변잡음에도 적용 가능한 장점이 있다. 그러나 히스토그램 처리방법으로 신뢰도 높은 잡음 스펙트럼의 평균값을 추정하더라도 스펙트럼 차감법을 적용했을 때의 잔여 잡음의 문제가 발생한다. 이를 해결하기 위하여 잡음추정 과정에 사용되었던 히스토그램의 분포특성을 고려한 새로운 over-estimation 적용방식을 제안한다. 제안된 방식은 측정된 잡음의 분포에 따라 적응적으로 over-estimation의 정도를 결정함으로써 SNR 변화에 따른 영향이 적은 장점이 있다. 자동차 소음 환경에서의 화자독립 고립단어 인식실험 결과, 기존의 over-estimation factor를 적용한 경우보다 제안된 방식의 인식성능이 개선되었다.
최근 얼굴 표정 인식에 있어 영상 기반의 방법의 하나로서 ULBP 블록 히스토그램 피쳐와 SVM을 분류기로 사용한 연구가 수행되었다. Ojala 등에 의해 소개된 LBP는 높은 식별력과 조명의 변화에 대한 내구성과 간단한 연산 때문에 영상 인식 분야에 많이 사용되고 있다. 본 논문에서는 ULBP 블록 히스토그램을 계산함에 있어 분할 영역의 이동, 크기 변화에 더하여 미세한 특징 요소를 표현할 수 있도록 $LBP_{8,2}$과 $LBP_{8,1}$를 결합하였다. $LBP_{8,1}$ 660개, $LBP_{8,2}$ 550개의 분할 창으로부터 1210개의 ULBP 히스토그램 피쳐를 추출하고 이로부터 AdaBoost를 이용하여 50개의 약 분류기를 생성하였다. $LBP_{8,1}$와 $LBP_{8,2}$가 결합된 하이브리드 형태의 ULBP 블록 히스토그램 피쳐와 SVM 분류기를 이용함으로써 표정 인식률을 향상시킬 수 있었으며 다양한 실험을 통하여 이를 확인하였다. 본 논문에서 제안한 하이브리드 Boosted ULBP 히스토그램의 경우에 표정의 인식률이 96.3%로 가장 높은 결과를 보였으며 제안한 방법의 우수성을 확인하였다.
최근 보행자의 교통안전 개선을 위한 목적으로 차량에 장착되는 보행자 보호 시스템(PPS, Pedestrian Protection System)에 대한 관심과 요구가 증가하고 있다. 본 연구에서는 보행자 검출 후보 윈도우 추출과 셀(cell) 단위 히스토그램 기반의 HOG 특징 계산 방법을 제안하였다. 보행자 검출 후보 윈도우 추출은 주변밝기 비율체크, 수직방향 에지투영, 에지펙터(edge factor), 그리고 PCA(Principal Component Analysis) 복원 영상을 이용하였다. Dalal 의 HOG 는 겹침 블록 상의 모든 픽셀에 대해 가우시안 가중치와 삼선형보간에 의한 히스토그램 계산이 필요한데 반하여 제안하는 방법은 단위 셀마다 가우시안 가중 및 히스토그램을 계산하고 그것들을 인접 셀과 결합하므로 연산 속도가 빠르다. 제안하는 PCA 복원 에러 기반의 보행자 검출 후보 윈도우 추출은 보행자의 머리와 어깨 영역과의 차이를 기준으로 배경을 효율적으로 분류한다. 제안하는 방법은 카메라 컬리브레이션이나 스테레오 카메라를 이용한 거리 정보 없이도 영상만으로 전통적인 HOG 에 비하여 연산속도가 크게 개선된다.
히스토그램은 데이타베이스 시스템에서 질의 결과 크기를 추정하는 데 널리 이용되고 있다. 히스토그램 기법에서 질의 결과 크기에 대한 추정은 각 버킷 영역 내의 객체들이 균등하게 분포한다는 가정하에 이루어진다. 그러나, 주어진 질의 영역 내의 객체들은 균등하게 분포하지 않을 수 있다. 다시 말해서, 버킷 영역 내에 높은 밀도의 객체 군집 즉 클러스터가 존재할 수 있으며 이로 인하여 히스토그램의 정확도가 현저히 저하될 수 있다. 본 연구의 목적은 히스토그램의 정확도를 향상시키는 데 있다. 이를 위하여 본 연구는 클러스터를 고려한 새로운 히스토그램 기법을 제안한다. 제안하는 기법은 주어진 데이타 분포내에 존재하는 고 밀도 영역을 탐색하고 이를 히스토그램 생성에 활용한다. 제안하는 기법은 클러스터에 의한 정확도 저하를 효과적으로 감소시킴으로써 데이타가 균등하게 분포하지 않은 상황에서 향상된 성능을 제공할 수 있다. 실험을 통해 본 연구는 제안하는 기법이 기존 기법의 성능을 최대 74% 향상시킴을 확인하였다.
대부분의 이진화 알고리즘은 임계치를 결정하기 위하여 히스토그램을 사용하여 밝기 분포를 분석한다. 배경과 물체의 명도차이가 큰 경우에는 양봉 형태의 히스토그램이 나타나며 최적의 임계치를 찾기 위해 히스토그램 골짜기를 선택하는 것만으로도 양호한 임계치 결과를 얻을 수 있다. 반면에 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성을 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다 본 논문에서는 RGB 컬러 모형의 각 색상에 대하여 퍼지 소속 함수를 적용하고, 그 결과를 이용해 배경에 비해 가독성이 높은 특징들을 배경과 분리하는 방법을 제안한다. 제안된 이진화 방법은 RGB의 각 색상에 퍼지 소속 함수를 적용하여 얻은 값들을 이용해 이진화한다. 기존의 임계치를 이용한 이진화 방법에 비해 잡음 영역을 상당히 제거 할 수 있으며, 운송 컨테이너 영상에 적용한 결과, 기존의 방법에 비해 효율적인 것을 확인하였다.
현대의 대량화된 영상 관리 시스템은 영상의 특징을 표현하는 영상식별자에 대해 왜곡에 강인하며 빠른 검색 속도, 정확성 및 효율적인 저장 등의 기본 성능을 요구한다. 영상식별자 설계 방법은 기하학적 왜곡에 강인한 지역 방식과 빠른 검색 및 적은 저장 용량의 속성을 지닌 전역방식으로 구분 할 수 있다. 본 논문에서는 왜곡에 강하고 지역적 공간적 제약으로 인한 서로간의 차별성이 강화된 지역 기술자들로부터 각각 개개 차원의 특징 분포도를 분석하여, 두 영상간의 유사도를 빠르고 정확하게 측정할 수 있는 지역 기술자 및 전역 기술자의 속성을 가지고 있는 LFH(Local Feature's Histogram)기반 영상식별자를 제안한다. 또한 GPU를 사용하여 LFH를 구현하는 방법을 제시하며, 제안한 LFH와 대표적인 지역, 전역 방식인 SIFT 및 EHD 방식과 저장용량, 추출 시간, 검색 속도 및 정확률에 대한 성능을 비교하였다.
영상 강조 기법은 영상의 낮은 명암 대비(contrast)를 노이즈나 블러링(blurring)의 제거, 명암 대비의 증가, 세밀함의 확장 등을 통해 시각적으로 향상시키는 작업을 말한다. 본 논문에서는 기존에 제안되어 온 여러 영상 강조 기법들의 장점을 기반으로 한 Adaptive dynamic range linear stretching(ADRLS) 영상 강조 기법을 제안한다. ADRLS 기법은 입력 영상의 히스토그램 분할과 동시에 adaptive scale factor를 적용하여 다수의 서브 히스토그램을 생성하는 것에 초점을 맞추고 있으며, 생성된 서브 히스토그램은 최종적으로 선형 강조(Linear Stretching, LS) 기법이 적용되어 영상 강조를 수행하게 된다. 제안된 기법의 성능을 검증하기 위해 기존의 히스토그램 선형 강조 기법, 히스토그램 평활화(Histogram Equalization, HE) 기법과 비교 평가하였으며, 그 결과 기존의 기법들에 비해 영상의 과도한 밝기 변화를 억제함으로써 영상의 시각적인 특성을 유지하고, 입력 영상이 갖고 있는 히스토그램의 특성을 보존하는 효과를 보였다.
Iris recognition is a biometric technology which can identify a person using the iris pattern. It is important for the iris recognition system to extract the feature which is invariant to changes in iris patterns. Those changes can be occurred by the influence of lights, changes in the size of the pupil, and head tilting. This paper is appropriate for the embedded environment using local gradient histogram embedded system using iris feature extraction methods have implement. The proposed method enables high-speed feature extraction and feature comparison because it requires no additional processing to obtain the rotation invariance, and shows comparable performance to the well-known previous methods.
This study represents the efficient depth measurement for 3-dimensional microsystems using the disparity histogram from stereo images. Implementation of user-friendly Windows program written in C++ involves the various methods for the stereo-image processing in which the minimization of matching-pixel error upon the unique point for stereo images was carried out as a pre-processing method. Even though MPC among various methods was adopted in the present measurement, the resulting measurements seem to require optimizations of the windows sizes and corrections of post-manipulation for stereo images. The present work using Windows program is promising to measure the 3-dimensional depth of micro-system efficiently in implementing the 3-dimensional structure of micro-systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.