• Title/Summary/Keyword: Histogram methods

Search Result 569, Processing Time 0.025 seconds

Content-Based Image Retrieval using Color Feature of Region and Adaptive Color Histogram Bin Matching Method (영역의 컬러특징과 적응적 컬러 히스토그램 빈 매칭 방법을 이용한 내용기반 영상검색)

  • Park, Jung-Man;Yoo, Gi-Hyoung;Jang, Se-Young;Han, Deuk-Su;Kwak, Hoon-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.364-366
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. They could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram Bin Matching(AHB) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have Quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that AHB's can give superior results to color histograms for image retrieval.

  • PDF

Content-Based Image Retrieval Using Adaptive Color Histogram

  • Yoo Gi-Hyoung;Park Jung-Man;You Kang-Soo;Yoo Seung-Sun;Kwak Hoon-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.949-954
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. Dey could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram(ACH) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that ACH's can give superior results to color histograms for image retrieval.

Image Contrast Enhancement based on Histogram Decomposition and Weighting (히스토그램 분할과 가중치에 기반한 영상 콘트라스트 향상 방법)

  • Kim, Ma-Ry;Chung, Min-Gyo
    • Journal of Internet Computing and Services
    • /
    • v.10 no.3
    • /
    • pp.173-185
    • /
    • 2009
  • This paper proposes two new image contrast enhancement methods, RSWHE (Recursively Separated and Weighted Histogram Equalization) and RSWHS (Recursively Separated and Weighted Histogram Specification). RSWHE is a histogram equalization method based on histogram decomposition and weighting, whereas RSWHS is a histogram specification method based on histogram decomposition and weighting. The two proposed methods work as follows: 1) decompose an input histogram based on the image's mean brightness, 2) compute the probability for the area corresponding to each sub-histogram, 3) modify the sub-histogram by weighting it with the computed probability value, 4) lastly, perform histogram equalization (in the case of RSWHE) or histogram specification (in the case of RSWHS) on the modified sub-histograms independently. Experimental results show that RSWHE and RSWHS outperform other methods in terms of contrast enhancement and mean brightness preservation as well.

  • PDF

An Improved Histogram Specification using Multiresolution in the Spatial Domain for Image Enhancement (이미지 향상을 위해 공간영역에서 다중해상도를 이용한 개선된 히스토그램 특정화 방법)

  • Huh, Kyung-Moo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.657-662
    • /
    • 2014
  • Usually, spatial information can be incorporated into histograms by taking histograms of a multiresolution image. For these reasons, many researchers are interested in multiresolution histogram processing. If the relation and sensitivity of the multiresolution images are well combined without loss of information, we can obtain satisfactory results in several fields of image processing including histogram equalization, specification and pattern matching. In this paper, we propose a multiresolution histogram specification method that improves the accuracy of histogram specification. The multiresolution decomposition technique is used in order to overcome the unique feature of a histogram specification affected by a quantization error of a digitalized image. The histogram specification is processed after the reduction of image resolution in order to enhance the accuracy of the results by histogram specification methods. The experimental results show that the proposed method enhances the accuracy of specification compared to conventional methods.

A Novel Filter ed Bi-Histogram Equalization Method

  • Sengee, Nyamlkhagva;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.6
    • /
    • pp.691-700
    • /
    • 2015
  • Here, we present a new framework for histogram equalization in which both local and global contrasts are enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Filters are chosen depending on image properties, such as noise removal and smoothing. Our experimental results confirmed that this does not increase the computational cost because the filtering process is done by our proposed arrangement of making the histogram while checking neighborhood metrics simultaneously. If the two methods, i.e., histogram equalization and filtering, are performed sequentially, the first method uses the original image data and next method uses the data altered by the first. With combined histogram equalization and filtering, the original data can be used for both methods. The proposed method is fully automated and any spatial neighborhood filter type and size can be used. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.

A Novel Adaptive Histogram Equalization based on Histogram Matching (히스토그램 매칭에 기반한 적응적 히스토그램 균등화)

  • Min, Byong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1231-1236
    • /
    • 2006
  • The contrast control of images with narrow dynamic range is a simple method among enhancement methods for low intensity of image. Histogram equalization is the most common method for this purpose, which stretches the dynamic range of intensity Conventional methods would fail to enhance images with extremely dark and bright regions, because of not considering the shape of histogram. In this paper, we propose a novel adaptive histogram equalization based on histogram matching with multiple Gaussian transformation function. As a result, output images with a couple of peaks of histogram could be improved and the details such as edges in dark regions could be appeared better than conventional method subjectively.

  • PDF

Entropic Image Thresholding Segmentation Based on Gabor Histogram

  • Yi, Sanli;Zhang, Guifang;He, Jianfeng;Tong, Lirong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2113-2128
    • /
    • 2019
  • Image thresholding techniques introducing spatial information are widely used image segmentation. Some methods are used to calculate the optimal threshold by building a specific histogram with different parameters, such as gray value of pixel, average gray value and gradient-magnitude, etc. However, these methods still have some limitations. In this paper, an entropic thresholding method based on Gabor histogram (a new 2D histogram constructed by using Gabor filter) is applied to image segmentation, which can distinguish foreground/background, edge and noise of image effectively. Comparing with some methods, including 2D-KSW, GLSC-KSW, 2D-D-KSW and GLGM-KSW, the proposed method, tested on 10 realistic images for segmentation, presents a higher effectiveness and robustness.

An Improved Histogram-Based Image Hash (Histogram에 기반한 Image Hash 개선)

  • Kim, So-Young;Kim, Hyoung-Joong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.531-534
    • /
    • 2008
  • Image Hash specifies as a descriptor that can be used to measure similarity in images. Among all image Hash methods, histogram based image Hash has robustness to common noise-like operation and various geometric except histogram _equalization. In this_paper an improved histogram based Image Hash that is using "Imadjust" filter I together is proposed. This paper has achieved a satisfactory performance level on histogram equalization as well as geometric deformation.

  • PDF

DWTHE: Decomposable Weighted and Thresholded Histogram Equalization (DWTHE: 분할 기반의 히스토그램 평활화)

  • Kim, Mary;Chung, Min-Gyo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.11
    • /
    • pp.856-860
    • /
    • 2009
  • Wang and Ward developed an image contrast enhancement method called WTHE (Weighted and Thresholded Histogram Equalization). In this paper, we propose an improved variant of WTHE called DWTHE(Decomposable WTHE) that enhances WTHE through the use of histogram decomposition. Specifically, DWTHE divides an input histogram by using image's mean brightness or equally-spaced brightness points, computes a probability value for each sub-histogram, modifies the sub-histograms by using those probability values as weights, and then performs histogram equalization on the modified input histogram. As opposed to WTHE that uses a single weight, DWTHE uses multiple weights derived from histogram decomposition. Experimental results show that the proposed method outperforms the previous histogram equalization based methods.

Double monothetic clustering for histogram-valued data

  • Kim, Jaejik;Billard, L.
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.3
    • /
    • pp.263-274
    • /
    • 2018
  • One of the common issues in large dataset analyses is to detect and construct homogeneous groups of objects in those datasets. This is typically done by some form of clustering technique. In this study, we present a divisive hierarchical clustering method for two monothetic characteristics of histogram data. Unlike classical data points, a histogram has internal variation of itself as well as location information. However, to find the optimal bipartition, existing divisive monothetic clustering methods for histogram data consider only location information as a monothetic characteristic and they cannot distinguish histograms with the same location but different internal variations. Thus, a divisive clustering method considering both location and internal variation of histograms is proposed in this study. The method has an advantage in interpreting clustering outcomes by providing binary questions for each split. The proposed clustering method is verified through a simulation study and applied to a large U.S. house property value dataset.