• Title/Summary/Keyword: Histogram back-projection

Search Result 16, Processing Time 0.03 seconds

Algorithm for Moving Object Tracking from Moving Camera Using Histogram Projection (히스토그램 프로젝션을 이용한 움직이는 카메라로 부터의 이동물체 추적 알고리즘)

  • 설성욱;이희봉;김효성;남기곤;이철헌
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.38-45
    • /
    • 2001
  • In this paper, we propose an algorithm for moving object tracking from moving camera using histogram back program intersection(HI) and XY-projection The proposed method segments objects using histogram back projection, matches tracing objects using histogram intersection and extracts them using XY- projection. Through the simulation this paper shows that the proposed method segments. matches and tracks objects without significant error image sequences obtained by moving camera.

  • PDF

Back Projection Histogram Method in Homogeneous Field for Microwave Subsurface Radar

  • Tanaka, Masayuki;Ohyama, Shinji;Kobayashi, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.456-456
    • /
    • 2000
  • The back projection histogram method has been proposed as the method to construct an image from waves reflected from a buried object for subsurface radar. This method is compose of two phases, i.e., a back projection image construction process and a back projection image superposition process. A simulation analysis of this method has been studied. In this paper, an experimental study is demonstrated in air as the homogeneous Held using three cylinders as buried objects.

  • PDF

The Object Tracking Method using Multi-model Color Histogram Back-projection (다중 모델 색상 히스토그램 역투영을 이용한 물체 추적 기법)

  • 이정호;정동석
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.849-852
    • /
    • 2000
  • 본 논문은 배경이 고정되지 않은 복잡한 동영상에서의 물체 추적을 위하여 다중 모델 색상 히스토그램 역투영(Multi Model Color Histogram Back-projection)방법을 제안한다. 색상 히스토그램 역투영(Color Histogram Back-projection)을 이용하면 카메라의 움직임 때문에 발생하는 배경의 변화에 관계없이 물체를 추적할 수 있다. 기존의 방법은 추적하려는 물체에 대해 하나의 모델만을 적용했기 때문에, 배경영역 색분포의 영향을 많이 받는다. 이를 해결하기 위해 다중 모델 색상 히스토그램 역투영 방법을 이용하였다. 이 방법은 추적하려는 물체에 대해 여러 개의 모델을 구하여 각각에 대해 색상 히스토그램 역투영을 수행한다 또한 역투영 이진 영상에서 물체의 위치를 결정하기 위한 수평, 수직 프로젝션 방법의 문제점을 레이블링(Labeling)을 사용하여 보완하였다.

  • PDF

A Study on Class Sample Extraction Technique Using Histogram Back-Projection for Object-Based Image Classification (객체 기반 영상 분류를 위한 히스토그램 역투영을 이용한 클래스 샘플 추출 기법에 관한 연구)

  • Chul-Soo Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.157-168
    • /
    • 2023
  • Image segmentation and supervised classification techniques are widely used to monitor the ground surface using high-resolution remote sensing images. In order to classify various objects, a process of defining a class corresponding to each object and selecting samples belonging to each class is required. Existing methods for extracting class samples should select a sufficient number of samples having similar intensity characteristics for each class. This process depends on the user's visual identification and takes a lot of time. Representative samples of the class extracted are likely to vary depending on the user, and as a result, the classification performance is greatly affected by the class sample extraction result. In this study, we propose an image classification technique that minimizes user intervention when extracting class samples by applying the histogram back-projection technique and has consistent intensity characteristics of samples belonging to classes. The proposed classification technique using histogram back-projection showed improved classification accuracy in both the experiment using hue subchannels of the hue saturation value transformed image from Compact Advanced Satellite 500-1 imagery and the experiment using the original image compared to the technique that did not use histogram back-projection.

Video Object Extraction Using Contour Information (윤곽선 정보를 이용한 동영상에서의 객체 추출)

  • Kim, Jae-Kwang;Lee, Jae-Ho;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.33-45
    • /
    • 2011
  • In this paper, we present a method for extracting video objects efficiently by using the modified graph cut algorithm based on contour information. First, we extract objects at the first frame by an automatic object extraction algorithm or the user interaction. To estimate the objects' contours at the current frame, motion information of objects' contour in the previous frame is analyzed. Block-based histogram back-projection is conducted along the estimated contour point. Each color model of objects and background can be generated from back-projection images. The probabilities of links between neighboring pixels are decided by the logarithmic based distance transform map obtained from the estimated contour image. Energy of the graph is defined by predefined color models and logarithmic distance transform map. Finally, the object is extracted by minimizing the energy. Experimental results of various test images show that our algorithm works more accurately than other methods.

Object Identification and Localization for Image Recognition (이미지 인식을 위한 객체 식별 및 지역화)

  • Lee, Yong-Hwan;Park, Je-Ho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.49-55
    • /
    • 2012
  • This paper proposes an efficient method of object identification and localization for image recognition. The new proposed algorithm utilizes correlogram back-projection in the YCbCr chromaticity components to handle the problem of sub-region querying. Utilizing similar spatial color information enables users to detect and locate primary location and candidate regions accurately, without the need for additional information about the number of objects. Comparing this proposed algorithm to existing methods, experimental results show that improvement of 21% was observed. These results reveal that color correlogram is markedly more effective than color histogram for this task. Main contribution of this paper is that a different way of treating color spaces and a histogram measure, which involves information on spatial color, are applied in object localization. This approach opens up new opportunities for object detection for the use in the area of interactive image and 2-D based augmented reality.

Robust Target Model Update for Mean-shift Tracking with Background Weighted Histogram

  • Jang, Yong-Hyun;Suh, Jung-Keun;Kim, Ku-Jin;Choi, Yoo-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1377-1389
    • /
    • 2016
  • This paper presents a target model update scheme for the mean-shift tracking with background weighted histogram. In the scheme, the target candidate histogram is corrected by considering the back-projection weight of each pixel in the kernel after the best target candidate in the current frame image is chosen. In each frame, the target model is updated by the weighted average of the current target model and the corrected target candidate. We compared our target model update scheme with the previous ones by applying several test sequences. The experimental results showed that the object tracking accuracy was greatly improved by using the proposed scheme.

A Moving Object Tracking System from a Moving Camera by Integration of Motion Estimation and Double Difference (BBME와 DD를 통합한 움직이는 카메라로부터의 이동물체 추적 시스템)

  • 설성욱;송진기;장지혜;이철헌;남기곤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.173-181
    • /
    • 2004
  • In this paper, we propose a system for automatic moving object detection and tracking in sequence images acquired from a moving camera. The proposed algorithm consists of moving object detection and its tracking. Moving object can be detected by integration of BBME and DD method We segment the detected object using histogram back projection, match it using histogram intersection, extract and track it using XY-projection. Computer simulation results have shown that the proposed algorithm is reliable and can successfully detect and track a moving object on image sequences obtained by a moving camera.

Particle Filtering based Object Tracking Method using Feedback and Tracking Box Correction (피드백과 박스 보정을 이용한 Particle Filtering 객체추적 방법론)

  • Ahn, Jung-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.77-82
    • /
    • 2013
  • The object tracking method using particle filtering has been proved successful since it is based on the Monte Carlo simulation to estimate the posterior distribution of the state vector that is nonlinear and non-Gaussian in the real-world situation. In this paper, we present two nobel methods that can improve the performance of the object tracking algorithm based on the particle filtering. First one is the feedback method that replace the low-weighted tracking sample by the estimated state vector in the previous frame. The second one is an tracking box correction method to find an confidence interval of back projection probability on the estimated candidate object area. An sample propagation equation is also presented, which is obtained by experiments. We designed well-organized test data set which reflects various challenging circumstances, and, by using it, experimental results proved that the proposed methods improves the traditional particle filter based object tracking method.

Evaluation of the Impact of Iterative Reconstruction Algorithms on Computed Tomography Texture Features of the Liver Parenchyma Using the Filtration-Histogram Method

  • Pamela Sung;Jeong Min Lee;Ijin Joo;Sanghyup Lee;Tae-Hyung Kim;Balaji Ganeshan
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.558-568
    • /
    • 2019
  • Objective: To evaluate whether computed tomography (CT) reconstruction algorithms affect the CT texture features of the liver parenchyma. Materials and Methods: This retrospective study comprised 58 patients (normal liver, n = 34; chronic liver disease [CLD], n = 24) who underwent liver CT scans using a single CT scanner. All CT images were reconstructed using filtered back projection (FBP), hybrid iterative reconstruction (IR) (iDOSE4), and model-based IR (IMR). On arterial phase (AP) and portal venous phase (PVP) CT imaging, quantitative texture analysis of the liver parenchyma using a single-slice region of interest was performed at the level of the hepatic hilum using a filtration-histogram statistic-based method with different filter values. Texture features were compared among the three reconstruction methods and between normal livers and those from CLD patients. Additionally, we evaluated the inter- and intra-observer reliability of the CT texture analysis by calculating intraclass correlation coefficients (ICCs). Results: IR techniques affect various CT texture features of the liver parenchyma. In particular, model-based IR frequently showed significant differences compared to FBP or hybrid IR on both AP and PVP CT imaging. Significant variation in entropy was observed between the three reconstruction algorithms on PVP imaging (p < 0.05). Comparison between normal livers and those from CLD patients revealed that AP images depend more strongly on the reconstruction method used than PVP images. For both inter- and intra-observer reliability, ICCs were acceptable (> 0.75) for CT imaging without filtration. Conclusion: CT texture features of the liver parenchyma evaluated using the filtration-histogram method were significantly affected by the CT reconstruction algorithm used.