• 제목/요약/키워드: Histogram Region Equalization

검색결과 41건 처리시간 0.019초

국부영역의 동적범위 변화를 이용한 영상 개선 알고리즘 (Regional Dynamic Range Histogram Equalization for Image Enhancement)

  • 이의혁
    • 한국군사과학기술학회지
    • /
    • 제7권3호
    • /
    • pp.101-109
    • /
    • 2004
  • Image enhancement for Infrared imaging system is mainly based on the global histogram equalization. The global histogram equalization(GHE) is a method in which each pixel is equalized by using a whole histogram of an image. GHE is speedy and effective for real-time imaging system but its method fails to enhance the fine details. On the other hand, the basic local histogram equalization(LHE) method uses sliding a window and. the pixels under the window region are equalized over the whole output dynamic range. The LHE is adequate to enhance the fine details. But this method is computationally slow and noises are over-enhanced. So various local histogram equalization methods have been already presented to overcome these problems of LHE. In this paper, a new regional dynamic range histogram equalization (RDRHE) is presented. RDRHE improves the equalization quality while reducing the computational burden.

색채 항상성 방법과 경계 영역 기반 히스토그램 평활화 방법을 이용한 영상의 화질 향상 방법 (An Image Enhancement Algorithm based on Color Constancy and Histogram Equalization using Edge Region)

  • 조동찬;강형섭;김회율
    • 방송공학회논문지
    • /
    • 제15권3호
    • /
    • pp.332-345
    • /
    • 2010
  • 고선명 영상에 대한 수요가 증가하면서 다양한 방면에서 좀 더 선명하고 큰 영상을 보고 촬영하려는 요구가 늘어나고 있다. 특히 디스플레이 장치의 크기가 커지고 이에 따라 영상의 해상도가 커지면서 영상에서 나타나는 잡음이나 화질 저하가 이전에 비하여 더욱 더 눈에 띄게 나타나게 되었다. 본 논문에서 고선명 영상과 같이 해상도가 큰 영상의 색상과 명암 대비를 효과적이고 빠르게 개선하기 위한 방법을 제안한다. 고해상도 영상에서 처리 속도를 높이면서 효과적으로 화질 향상 방법을 적용하기 위해 고해상도 영상을 축소시킨 영상에서 화질 향상 방법에 필요한 변수를 추출해낸다. 영상의 색상을 향상시키기 위해 기존의 색채 항상성 방법을 개선시킨 방법을 적용하였고 명암 대비를 향상시키기 위해 경계 영역을 활용한 변형 히스토그램 평활화 방법을 적용하였다. 마지막으로 고해상도 영상을 촬영할 수 있는 디지털 캠코더를 이용하여 촬영한 실험 영상으로 제안하는 방법의 성능을 분석하였다.

Color Image Enhancement Using Local Area Histogram Equalization On Segmented Regions Via Watershed Transform

  • Lertpokanont, B.;Chitwong, S.;Cheevasuvit, F.;Dejhan, K.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.192-194
    • /
    • 2003
  • Since the details in quasi-homogeneous region will be destroyed from the conventional global image enhancement method such as histogram equalization. This defect is caused by the saturation of gray level in equalization process. So the local histogram equalization for each quasi-homogeneous region will be used in order to improve the details in the region itself. To obtain the quasi- homogeneous regions, the original image must be segmented. Here we applied the watershed transform to the interesting image. Since the watershed transform is based on mathematical morphology, therefore, the regions touch can be effectively separated. Hence two adjacent regions which have the similar gray pixels will be split off. The process will be independently applied to three different spectral images. Then three different colors are assigned to each processed image in order to produce a color composite image. By the proposed algorithm, the result image shows the better perception on image details. Therefore, the high efficiency of image classification can be obtained by using this color image.

  • PDF

밝기 보존을 위한 동적 영역 분할을 이용한 적응형 명암비 향상기법 (An Adaptive Contrast Enhancement Method using Dynamic Range Segmentation for Brightness Preservation)

  • 박규희;조화현;이승준;윤종호;최명렬
    • 전기학회논문지P
    • /
    • 제57권1호
    • /
    • pp.14-21
    • /
    • 2008
  • In this paper, we propose an adaptive contrast enhancement method using dynamic range segmentation. Histogram Equalization (HE) method is widely used for contrast enhancement. However, histogram equalization method is not suitable for commercial display because it may cause undesirable artifacts due to the significant change in brightness. The proposed algorithm segments the dynamic range of the histogram and redistributes the pixel intensities by the segment area ratio. The proposed method may cause over compressed effect when intensity distribution of an original image is concentrated in specific narrow region. In order to overcome this problem, we introduce an adaptive scale factor. The experimental results show that the proposed algorithm suppresses the significant change in brightness and provides wide histogram distribution compared with histogram equalization.

가우시안 혼합 모델 기반의 영상 히스토그램 평활화 (Image Histogram Equalization Based on Gaussian Mixture Model)

  • 전미진;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제15권6호
    • /
    • pp.748-760
    • /
    • 2012
  • 영상에서 밝기 분포가 특정한 범위에 밀집되어 있는 경우 영상에 포함된 특징을 구분하기가 어렵다. 이러한 문제를 해결하기 위해서 전역 히스토그램 평활화와 지역 히스토그램 평활화를 적용한다. 전역 히스토그램 평활화를 적용하는 경우 밝기 분포의 밀집 정도를 고려하지 않고 전체 히스토그램 정보를 사용하기 때문에 지나치게 밝아지거나 어두워질 수 있으며 부분적인 명암값을 개선시키는 것이 어렵다. 지역 히스토그램 평활화를 적용하는 경우 영상의 전체 밝기 분포를 고려하지 않고 지역적인 영상의 밝기 정보만을 사용하기 때문에 블록 간의 명암값의 차가 커져서 블록화 현상이 발생한다. 이러한 문제를 해결하기 위해 본 논문에서는 영상의 히스토그램의 영역에 가우시안 혼합 모델을 적용하여 모델링을 한 후, EM 알고리즘을 반복적으로 적용하여 각 영역의 범위를 결정한다. 그리고 분할된 영역별로 히스토그램 평활화를 적용하여 유사한 밝기값을 갖는 영역이 과도하게 평활화 되는 것을 방지하며 명암대비를 향상시킨다.

밀도기반의 분할된 히스토그램 평활화를 통한 대비 향상 기법 (Contrast Enhancement Using a Density based Sub-histogram Equalization Technique)

  • 윤현섭;한영준;한헌수
    • 전자공학회논문지SC
    • /
    • 제46권1호
    • /
    • pp.10-21
    • /
    • 2009
  • 영상에서 밝기의 분포가 밀집된 영역에 포함되는 특징은 구분이 어렵다. 이러한 문제의 해결을 위해 전역 혹은 지역 명암대비 향상기법을 사용하게 되며 주로 히스토그램의 평활화 기법이 적용된다. 기존의 전역 명암대비 향상기법을 적용하는 경우 밝기 밀집 정도를 고려하지 않아서 지나치게 밝거나 너무 어두운 값으로 변환하는 문제를 만들고, 지역 명암대비 향상기법은 결과 영상에서 특징을 분리해버리거나 밝기분포의 불규칙성으로 인해 부자연스러운 영상을 만들어내는 결과를 보여주기도 한다. 본 논문은 이러한 문제를 해결하기 위해 히스토그램을 밀집정도를 기준으로 분할하고, 각 분할된 히스토그램의 평활화 범위를 분할영역의 평균과 분산을 고려하여 결정하는 방법을 제안한다. 제안하는 방법은 평활화를 밀집영역의 밝기범위와 밀집정도를 고려하여 평활화하는 최고 및 최저 밝기를 결정함으로써 지나친 밝기의 변화를 최소화하고, 밀도가 낮은 나머지 영역들에 대해 분리된 평활화를 수행함에 따라 이들 영역의 특징들이 사라지지 않고 향상시키는 효과를 거둘 수 있다. 히스토그램의 분할 및 평활화 범위를 결정하는 방법도 본 논문에서 제시되었다. 제안된 방법의 성능의 우수성은 다양한 밝기 영역을 갖는 실험영상들을 대상으로 기존의 방법들과 비교실험을 통해 입증하였다.

퍼지를 이용한 X-ray 영상의 대비제한 적응 히스토그램 평활화 한계점 결정 (The Clip Limit Decision of Contrast Limited Adaptive Histogram Equalization for X-ray Images using Fuzzy Logic)

  • 조현지;계희원
    • 한국멀티미디어학회논문지
    • /
    • 제18권7호
    • /
    • pp.806-817
    • /
    • 2015
  • The contrast limited adaptive histogram equalization(CLAHE) is an advanced method for the histogram equalization which is a common contrast enhancement technique. The CLAHE divides the image into sections, and applies the contrast limited histogram equalization for each section. X-ray images can be classified into three areas: skin, bone, and air area. In clinical application, the interest area is limited to the skin or bone area depending on the diagnosis region. The CLAHE could deteriorate X-ray image quality because the CLAHE enhances the area which doesn't need to be enhanced. In this paper, we propose a new method which automatically determines the clip limit of CLAHE's parameter to improve X-ray image quality using fuzzy logic. We introduce fuzzy logic which is possible to determine clip limit proportional to the interest of users. Experimental results show that the proposed method improve images according to the user's preference by focusing on the subject.

다중 컬러필터 조리개 시스템을 위한 적응적 히스토그램 평활화를 이용한 영상 개선 (Image Enhancement Using Adaptive Region-based Histogram Equalization for Multiple Color-Filter Aperture System)

  • 이은성;강원석;김상진;백준기
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.65-73
    • /
    • 2011
  • 본 논문은 다중 컬러 필터 조리개 (multiple color-filter aperture; MCA) 시스템에서 영역 적응적 히스토그램 평활화를 사용하여 저노출 환경에서도 강건한 새로운 디지털 다중초점 (multifocusing) 방법을 소개한다. MCA 시스템은 획득된 영상의 컬러 채널 간에 발생하는 부정합 (misalignment) 정도를 측정하여 카메라의 거리에 따른 장면의 상대적 심도 정보를 추출한다. 추출된 상대적 심도 정보는 관심영역 (regsion-of-interests; ROIs) 분류 (classification), 정합 (registration), 융합 (fusion) 등의 과정을 통하여 다중초점 영상을 생성한다. 그러나 MCA 시스템은 유한한 구경의 조리개로 때문에 저노출 환경에서 성능의 저하를 초래하게 된다. 이러한 문제를 해결하기 위해 공간 적응적 히스토그램 확장을 이용한다. 실험결과에서 볼 수 있듯이, 제안한 기술은 저노출 환경에서도 콘트라스트가 향상된 다중초점 영상을 복원할 수 있음을 보여준다.

갑상선 초음파 영상의 평활화 알고리즘에 따른 U-Net 기반 학습 모델 평가 (Evaluation of U-Net Based Learning Models according to Equalization Algorithm in Thyroid Ultrasound Imaging)

  • 정무진;오주영;박훈희;이주영
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제47권1호
    • /
    • pp.29-37
    • /
    • 2024
  • This study aims to evaluate the performance of the U-Net based learning model that may vary depending on the histogram equalization algorithm. The subject of the experiment were 17 radiology students of this college, and 1,727 data sets in which the region of interest was set in the thyroid after acquiring ultrasound image data were used. The training set consisted of 1,383 images, the validation set consisted of 172 and the test data set consisted of 172. The equalization algorithm was divided into Histogram Equalization(HE) and Contrast Limited Adaptive Histogram Equalization(CLAHE), and according to the clip limit, it was divided into CLAHE8-1, CLAHE8-2. CLAHE8-3. Deep Learning was learned through size control, histogram equalization, Z-score normalization, and data augmentation. As a result of the experiment, the Attention U-Net showed the highest performance from CLAHE8-2 to 0.8355, and the U-Net and BSU-Net showed the highest performance from CLAHE8-3 to 0.8303 and 0.8277. In the case of mIoU, the Attention U-Net was 0.7175 in CLAHE8-2, the U-Net was 0.7098 and the BSU-Net was 0.7060 in CLAHE8-3. This study attempted to confirm the effects of U-Net, Attention U-Net, and BSU-Net models when histogram equalization is performed on ultrasound images. The increase in Clip Limit can be expected to increase the ROI match with the prediction mask by clarifying the boundaries, which affects the improvement of the contrast of the thyroid area in deep learning model learning, and consequently affects the performance improvement.

흉부 컴퓨터 단층 촬영에서 정규화를 사용한 다양한 히스토그램 평준화 기법을 비교 (Comparison of Based on Histogram Equalization Techniques by Using Normalization in Thoracic Computed Tomography)

  • 이영준;민정환
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권5호
    • /
    • pp.473-480
    • /
    • 2021
  • This study was purpose to method that applies for improving the image quality in CT and X-ray scan, especially in the lung region. Also, we researched the parameters of the image before and after applying for Histogram Equalization (HE) such as mean, median values in the histogram. These techniques are mainly used for all type of medical images such as for Chest X-ray, Low-Dose Computed Tomography (CT). These are also used to intensify tiny anatomies like vessels, lung nodules, airways and pulmonary fissures. The proposed techniques consist of two main steps using the MATLAB software (R2021a). First, the technique should apply for the process of normalization for improving the basic image more correctly. In the next, the technique actively rearranges the intensity of the image contrast. Second, the Contrast Limited Adaptive Histogram Equalization (CLAHE) method was used for enhancing small details, textures and local contrast of the image. As a result, this paper shows the modern and improved techniques of HE and some advantages of the technique on the traditional HE. Therefore, this paper concludes that various techniques related to the HE can be helpful for many processes, especially image pre-processing for Machine Learning (ML), Deep Learning (DL).