• Title/Summary/Keyword: Histogram Analysis

Search Result 490, Processing Time 0.028 seconds

Hierarchical Cluster Analysis Histogram Thresholding with Local Minima

  • Sengee, Nyamlkhagva;Radnaabazar, Chinzorig;Batsuuri, Suvdaa;Tsedendamba, Khurel-Ochir;Telue, Berekjan
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.189-194
    • /
    • 2017
  • In this study, we propose a method which is based on "Image segmentation by histogram thresholding using hierarchical cluster analysis"/HCA/ and "A nonparametric approach for histogram segmentation"/NHS/. HCA method uses that all histogram bins are one cluster then it reduces cluster numbers by using distance metric. Because this method has too many clusters, it is more computation. In order to eliminate disadvantages of "HCA" method, we used "NHS" method. NHS method finds all local minima of histogram. To reduce cluster number, we use NHS method which is fast. In our approach, we combine those two methods to eliminate disadvantages of Arifin method. The proposed method is not only less computational than "HCA" method because combined method has few clusters but also it uses local minima of histogram which is computed by "NHS".

Automatic Histogram Specification Based on Fuzzy Membership Value for Image Enhancement (퍼지 멤버쉽 값을 이용한 히스토그램 명세화)

  • 황태호;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.317-320
    • /
    • 2002
  • In this paper, an automatic histogram specification method is proposed for image enhancement, Fuzzy membership value is adopted for the representation of image histogram. The desired PDF is automatically constructed by the fuzzy membership value. Fuzzy membership value is extracted from dark membership, bright membership function and original histogram. The effectual results are demonstrated by desired PDF which meet the image enhancement requirements. The performance and effectiveness are shown by the analysis and the resultant image in comparison with histogram equalization method.

Local-Based Iterative Histogram Matching for Relative Radiometric Normalization

  • Seo, Dae Kyo;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.323-330
    • /
    • 2019
  • Radiometric normalization with multi-temporal satellite images is essential for time series analysis and change detection. Generally, relative radiometric normalization, which is an image-based method, is performed, and histogram matching is a representative method for normalizing the non-linear properties. However, since it utilizes global statistical information only, local information is not considered at all. Thus, this paper proposes a histogram matching method considering local information. The proposed method divides histograms based on density, mean, and standard deviation of image intensities, and performs histogram matching locally on the sub-histogram. The matched histogram is then further partitioned and this process is performed again, iteratively, controlled with the wasserstein distance. Finally, the proposed method is compared to global histogram matching. The experimental results show that the proposed method is visually and quantitatively superior to the conventional method, which indicates the applicability of the proposed method to the radiometric normalization of multi-temporal images with non-linear properties.

LDesign and implementation of a content-based image retrieval system using the duplicated color histogram and spatial information (중복된 칼라 히스토그램과 공간 정보를 이용한 내용 기반 화상 검색 시스템 설계 및 구현)

  • 김철원;최기호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.889-898
    • /
    • 1997
  • Most general content-based image retrieval techniques use color and texture as retrieval indices. Spatial information is not used to color histogram and color pair based on color retrieval techniques. This paper proposes the selection of a set of representative in the duplicated color histogram, the analysis of spatial information of the selected colors and the image retrieval process based on the duplicated color histogram and spatial information. Two color historgrams for background and object are used in order to decide on color selection in the duplicated color histogram. Spatial information is obtained using a maximum entropy discretization. A retrieval process applies to duplicated color histogram and spatial to retrieve input images and relevant images. As the result of experiment of the image retrieval, improved color his togram and spatial information method hs increased the retrieval effectiveness more the color histogram method and color pair method.

  • PDF

Diagnosis of tool wear and fracture using cutting force signal characteristics and histogram analysis (절삭력 신호특성과 히스토그램 분석에 의한 공구마모와 파손 진단)

  • 정진용;유기현;서남섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.75-81
    • /
    • 1997
  • Automatic monitoring the cutting state is one of the important problems to increase the reliability of modern machining processes. In this study, cutting force signals were used in order to monitor the tool wear and fracture in the turning process. Turning experiments were performed using cemented carbide insert tools(K20) and STS304 steel as a workpiece. Cutting force signal characteristics and histogram analysis method were used to recognize the cutting states. It was found that tool wear and fracture can be diagnosed from the cutting force signal coefficient of variation(C.V.) and histogram analysis.

  • PDF

Comparative Assessment of Fractal Analysis and Histogram in Canine Abdominal Ultrasonographic Images (개 복부초음파영상의 프랙탈 분석과 히스토그램 분석의 비교평가)

  • Choi, Ho-Jung;Lee, Young-Won;Jung, In-Jo;Wang, Ji-Hwan;Lee, Kyung-Woo;Yeon, Seong-Chan;Lee, Hyo-Jong;Lee, Hee-Chun
    • Journal of Veterinary Clinics
    • /
    • v.24 no.4
    • /
    • pp.568-572
    • /
    • 2007
  • This study was carried out to show at the fractal analysis complements the practical disadvantage of gray level histogram which is designed to measure the quantitative classification of echo patterns in ultrasonographic image of parenchymal organs such as spleen and kidney and it is a practical method of measurement for quantitative classification. By using ultrasonographs, kidney and spleen of 21 healthy Beagles were fixed under different gain settings to be scanned for echo patterns and results were analyzed with body gray level histogram and fractal analysis. Then it was compared based on the statistical data obtained. Although there was a proportionate increase in histogram along with gain settings, there were consistencies in the fractal dimension. In terms of quantitative analysis in ultrasonographic images, fractal analysis is concluded to complement the practical disadvantage of gray level histogram.

Automatic Extraction of Gound-glass Opacities on Lung CT Images by Histogram Analysis

  • Maekado, Masaki;Kim, Hyoung-Seop;Ishikawa, Seiji;Tsukuda, Masaaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2352-2355
    • /
    • 2003
  • In recent yeas, studies on computer aided diagnosis (CAD) using image analysis on CT images have been conducted with respect to various diseases. Extracting ground-glass opacities (GGO) on lung CT images is one of such subjects, though it has not found an established method yet. If the region of ground-glass opacities is large on CT images, it can be detected without much difficulty. On the other hand, if the region is small, it is still difficult to find it exactly. In the latter case, increasing overlooking possibility cannot be avoided according to smaller size of the region. To solve this difficulty, this paper proposes an automatic technique for extracting ground-glass opacities on lung CT images employing some statistical parameters of a gray level histogram and a differential histogram. The proposed technique is applied to some lung CT images in the performed experiment. The results are shown with discussion on future work.

  • PDF

Hand Segmentation Using Depth Information and Adaptive Threshold by Histogram Analysis with color Clustering

  • Fayya, Rabia;Rhee, Eun Joo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.5
    • /
    • pp.547-555
    • /
    • 2014
  • This paper presents a method for hand segmentation using depth information, and adaptive threshold by means of histogram analysis and color clustering in HSV color model. We consider hand area as a nearer object to the camera than background on depth information. And the threshold of hand color is adaptively determined by clustering using the matching of color values on the input image with one of the regions of hue histogram. Experimental results demonstrate 95% accuracy rate. Thus, we confirmed that the proposed method is effective for hand segmentation in variations of hand color, scale, rotation, pose, different lightning conditions and any colored background.

Fault detection of rotating machine elements by wideband spectral histogram analysis (Wideband spectral histogram 분석에 의한 회전기계 요소의 결함탐지)

  • 정완섭;은희준;임병덕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.123-127
    • /
    • 1986
  • The use of vibration signal for fault detection inside a machine (or its part) is not new, and a number of signal processing techniques are available at the moment. A common problem for all such techniques is the high level of background signals which often made it very difficult to distinguish the desired signals. We developed a new algorithm to detect the minute faults of rotating part based on spectral histogram analysis. The technique has subsequently been applied to the bearings and has proved to be useful.

  • PDF

Adaptive local histogram modification method for dynamic range compression of infrared images

  • Joung, Jihye
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.73-80
    • /
    • 2019
  • In this paper, we propose an effective dynamic range compression (DRC) method of infrared images. A histogram of infrared images has narrow dynamic range compared to visible images. Hence, it is important to apply the effective DRC algorithm for high performance of an infrared image analysis. The proposed algorithm for high dynamic range divides an infrared image into the overlapped blocks and calculates Shannon's entropy of overlapped blocks. After that, we classify each block according to the value of entropy and apply adaptive histogram modification method each overlapped block. We make an intensity mapping function through result of the adaptive histogram modification method which is using standard-deviation and maximum value of histogram of classified blocks. Lastly, in order to reduce block artifact, we apply hanning window to the overlapped blocks. In experimental result, the proposed method showed better performance of dynamic range compression compared to previous algorithms.