• Title/Summary/Keyword: Hinge System

Search Result 235, Processing Time 0.029 seconds

Design of a Controller for Enhancing Positioning Performance of a PZT Driven Stage (PZT 구동 스테이지의 위치 제어 성능 향상을 위한 제어기 설계)

  • Park, J.S.;Jeong, Kyu-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.465-472
    • /
    • 2012
  • This paper describes a new robust control algorithm which can be used to enhance the positioning performance of an ultra-precision positioning system. The working table is supported by flexure hinges and moved by a piezoelectric actuator, whose position is measured by an ultra-precise linear encoder. The system dynamics is very complicated because the movement of the table is governed by both the mechanical characteristics and those of the PZT actuator. So that, the dynamics of the stage was modeled roughly in this paper, and the overall system was formularized to solve the small gain problem. A series of experiments was conducted in order to verify the usefulness of the proposed algorithm. From the experimental results, the positioning performance such as the accuracy, the rise time and the hysteresis nonlinearity were greatly improved.

System Reliability Analysis of Midship Sections (선체 중앙 횡단면의 시스템 신뢰성해석)

  • Y.S. Yang;Y.S. Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.115-124
    • /
    • 1993
  • A structural system reliability analysis is studied for the safety assessment of midship section. Probabilistically dominant collapse modes are generated by Element Replacement Method and Incrimental Load Method. In order to avoid generating the same modes repeatedly, it is branched at final plastic hinge. Using first and second order bound methods, system failure probability of midship section is computed and compared with deterministic load factor method to show the usefulness of the proposed method.

  • PDF

An implementation of a controller for a double inverted pendulum with a single actuator (단일 구동부를 갖는 2축 도립 진자를 위한 제어기 구현)

  • 남노현;이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.257-260
    • /
    • 1997
  • In this paper, the double inverted pendulum having a single actuator is built and the controller for the system is proposed. The lower link is hinged on the plate to free for rotation in the x-z plane. The upper link is connected to the lower link through a DC motor. The double inverted pendulum built can be kept upright posture by controlling the position of the upper link even though the proposed inverted pendulum has no actuator in lower hinge. The algorithm to control the inverted pendulum is consisted of a state feedback controller within a linearizable range and a fuzzy logic controller coupled with a feedback linearization control for the rest of the range. Concept of the virtual work is employed to drive the linearlized model for the state feedback controller. The feedback linearization controller drives a DC motor with the modified reference joint angle from the fuzzy controller which adjusts a upright posture of a proposed pendulum system. Finally, the experiments are conducted to show the validity of the proposed controller.

  • PDF

Robust Sampled-Data Controller Design for a Flexible Beam (유연한 빔을 위한 강인한 샘플치 제어기의 설계)

  • Choe, Y.W.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.65-72
    • /
    • 2005
  • A new approach is presented to design a robust sampled-data controller for an experimental flexible beam carrying an unknown payload at its free end. The purpose of this paper is to move the free end of the beam to a desired position in the specified time under vibration suppression. We derive a transfer function nominal model for the beam and quantitative description of model uncertainties based on experimentally obtained frequency response data. Robust controllers are designed by applying the sampled-data $H_{\infty}$ control and ${\mu}m-theory$, in which two types of uncertainties, structured and unstructured uncertainties, are adopted for satisfactory performance in terms of hinge position regulation and vibration damping, besides obviously asymptotic stability. The effectiveness of the proposed method is confirmed through simulation and experimentation.

  • PDF

Analysis of lever actuator for the optical disk (광 픽업용 레버 구동기의 해석)

  • 한창수;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.618-621
    • /
    • 2001
  • The proposed lever actuator has no friction and mass balance characteristics in motion, which are adapt to high-speed and high-density optical disk system. This paper discussed about the theoretical analysis of the lever structure. The modeling of the lever actuator is found. Using the Newton's method, the motion of equation is deduced through the constraint equations and equilibrium equations in three directions (focusing, tracking and tilting). From the above analysis, we know that the shape of the hinge is the very important parameter on determining the performance of the lever actuator, and the actuator has the 2nd order system characteristics. And the first resonant frequency in transmissibility is dependent to the rigidity of the lever while the first transmissibility resonance of conventional actuators is dependent to the first natural resonance of those actuators. This means that the lever actuator is more stable to the external vibration.

  • PDF

The Development of Beam Rotating Actuator for High Speed Optical Disk Storage (고속 광학기록매체용 다중빔 회전 구동기의 개발)

  • 김병준;김수현;곽윤근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1072-1075
    • /
    • 1997
  • To enhance the effective data transfer rate the multi-beam optical disk drive is presented. The Beam rotating actuator is necessary for putting multi-beam on more than one track. Ray tracing was also executed for real system set-up. The Beam Rotating Actuator is made up of piezoelectric material, high stiffness wire hinge and dove prism. The actuator has about 1kHz natural frequency and suitable and suitable operational range. The dynamic equation for the actuator is derived for the control of real system.

  • PDF

The Development and Performance Analysis of Beam Rotating Actuator for Multi-Beam Disk Drive (다중빔 광디스크용 빔 회전 구동기의 제작과 특성평가)

  • Kim, Byeong-Jun;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3026-3032
    • /
    • 2000
  • To enhance the effective data transfer rate the multi-beam optical disk drive is presented. The Beam rotating actuator is necessary for putting multi-beam on more than one track. Ray tracing was also executed for real system set-up. The beam Rotating Actuator is made up of piezoelectric material, high stiffness wire hinge and dove prism. The actuator has about 1kHz natural frequency and suitable operational range. The dynamic equation for the actuator is derived for the control real system.

Seismic Design of Structures with Knee Braces (knee brace가 설치된 구조물의 내진설계)

  • 김진구;서영일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.274-281
    • /
    • 2002
  • In this study a analytical model for a structure with buckling-restrained unbonded knee-braces is proposed, and a performance-based seismic design procedure for such a system Is provided. The proposed structure system has advantage of simplifying the structural design procedure in that the hinge-connected main structural members, such as beams and columns, are designed only for gravity loads, and all the lateral seismic load is resisted by the braces. The design procedure is based on the concept of equivalent damping, and is implemented to the capacity spectrum method. Parametric study is performed with design variables such as yield stress and cross-sectional area of knee-braces to find out proper slope of the braces.

  • PDF

Development of High Precision Actuator for Micro Press System by Inchworm Motor (인치웜모터를 이용한 마이크로 프레스용 고정밀 구동기의 개발)

  • Choi, Jong-Pil;Nam, Kwang-Sun;Lee, Hye-Jin;Lee, Nak-Gue;Kim, Byeong-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.137-143
    • /
    • 2009
  • This paper presents the fabrication of inchworm motor for high precision actuator system of large displacement and high force. The inchworm motor consists of a extend actuator that provides displacement of tool guide and two clamping actuators which provide the holding force. In order to avoid the PZT fracture, design of pre-load housing was conducted by flexure hinge structure, because PZT actuator has low tensile and shear. To design the pre-load housing and optimize the clamping mechanism, the static and dynamic analysis were conducted by finite element method. From these results, a prototype of the inchworm motor was fabricated and dynamic characteristic with respect to the various frequency was tested. The maximum velocity of the inchworm motor was $41.1{\mu}m/s$ at 16Hz.

A controlled destruction and progressive collapse of 2D reinforced concrete frames

  • El houcine, Mourid;Said, Mamouri;Adnan, Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.111-139
    • /
    • 2018
  • A successful methodology for modelling controlled destruction and progressive collapse of 2D reinforced concrete frames is presented in this paper. The strategy is subdivided into several aspects including the failure mechanism creation, and dynamic motion in failure represented with multibody system (MBS) simulation that are used to jointly capture controlled demolition. First phase employs linear elasto-plastic analysis with isotropic hardening along with softening plastic hinge concept to investigate the complete failure of structure, leading to creation of final failure mechanism that behaves like MBS. Second phase deals with simulation and control of the progressive collapse of the structure up to total demolition, using the nonlinear dynamic analysis, with conserving/decaying energy scheme which is performed on MBS. The contact between structure and ground is also considered in simulation of collapse process. The efficiency of the proposed methodology is proved with several numerical examples including six story reinforced concrete frame structures.