• 제목/요약/키워드: Hinge System

검색결과 235건 처리시간 0.028초

CFD에 의한 발사체 롤 베인 제어 효율성 예측 및 구동 시스템 설계 (AN ESTIMATION OF THE ROLL CONTROL EFFECTIVENESS OF THE ROLL VANES OF A LAUNCH VEHICLE USING CFD AND DESIGN OF AN ACTUATION SYSTEM)

  • 김영훈;옥호남;김인선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.87-91
    • /
    • 2005
  • A conceptual design for the movable roll vane system is done for the roll stability control of KSLV-I. The control effectiveness of the roll vanes is estimated using the numerical simulation. The hinge location is selected to minimize the torque requirement at the maximum dynamic pressure condition, and the maximum torque of 3.0 kN-m is found to be required to actuate the roll vanes for the entire range of operation. An electro-mechanical actuator system which is composed of a DC motor, the speed reducers, the battery package and the controller is designed using the given requirements, the maximum torque of 3.0 kN-m, the maximum deflection angle of 25 deg. and the maximum angular velocity of 30 deg/sec. More detailed design to make more compact and highly efficient system will be done in the future.

  • PDF

초정밀 위치 제어를 위한 이중 서보 시스템의 보상기 설계 (Designing Compensators of Dual Servo System For High Precision Positioning)

  • 최현석;송치우;한창수;최태훈;이낙규;나경환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1309-1314
    • /
    • 2003
  • The high precision positioning mechanism is used in various industrial fields. It is used in semiconductor manufacturing line, test instrument, Bioengineering, and MEMS and so on. This paper presents a positioning mechanism with dual servo system. Dual servo system consists of a coarse stage and a fine motion stage. The course stage is driven by VCM and the actuator of fine stage is the PZT. The purposes of dual servo system are stability, higher bandwidth, and robustness. Lead compensator is applied to this control system, and is designed by PQ method. Designed compensator can improve property of positioning mechanism.

  • PDF

Microstage와 global stage를 결합한 초정밀 2축 이동장치 개발 (Development of high-precision 2-axis translation system comprised of microstage and global stage)

  • 김종윤;엄태봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.311-314
    • /
    • 1997
  • According to the development of industrial equipment such as semiconductor manufacturing machines, optical device, and precision machine tool, a high-precision translation system with wide range has been required. This paper describes a high-precision 2-axis translation system, which consists of microstage and global stage. In order to achieve the highresolution in the long range, some engineering techniques are used. Three linear guides with flexible coupling are adopted to reduce the motor vibration in the global stage. A simple elastic hinge structure activated by five PZT is applied to reduce the angular dev~atlon. As the result of combination of microstage and global stage associated with some engineering techniques, the 2-axis translation system can measure the 200 X 200 mrn range with the nanometer accuracy.

  • PDF

항공기 조종면 부하재현장치의 운동 특성 해석 (Dynamic Characteristic Analysis of Aerodynamic Load Simulator English)

  • 남윤수
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.478-485
    • /
    • 2001
  • A dynamic load simulator(DLS) which can reproduce on-ground the aerodynamic hinge moment of control surface is an essential rig for the performance and stability test of aircraft actuation system. By setting up load actuator as counter acting with the control surface driving actuator and designing an appropriate force control system for load actuator, DLS can be mechanized. Obtaining an accurate mathematical model for the DLS is the first step to successfully design an aerodynamic load replicati on system. Two theoretical models are presented and tested for their validities with the experimental results, which turns out to be not successful. An alternative way of using system identification approaches in investigated to develop a good nominal model for DLS dynamics, and suitable uncertainty bounds for this nominal model are proposed with the consideration of experimental results.

미세 부품 조작을 위한 탄성힌지 기반 압전소자 구동형 초정밀 머니플레이션 시스템 (A Piezo-driven Fine Manipulation System Based on Flexure Hinges for Manipulating Micro Parts)

  • 최기봉;이재종;김기홍;고국원
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.881-886
    • /
    • 2009
  • This paper presents a manipulation system consisting of a coarse/fine XY positioning system and an out-of-plane manipulator. The object of the system is to conduct tine positioning and manipulation of micro parts. The fine stage and the out-of-plane manipulator have compliant mechanisms with flexure hinges, which are driven by stack-type piezoelectric elements. In the fine stage, the compliant mechanism plays the roles of motion guide and displacement amplification. The out-of-plane manipulator contains three piezo-driven compliant mechanisms for large working range and fine resolution. For large displacement, the compliant mechanism is implemented by a two-step displacement amplification mechanism. The compliant mechanisms are manufactured by wire electro-discharge machining for flexure hinges. Experiments demonstrate that the developed system is applicable to a fine positioning and fine manipulation of micro parts.

비선형 해석에 의한 MRS 슬래브 단부 접합부의 모멘트 분포 연구 (Nonlinear Analysis for Negative Moment Distribution of MRS Slab End Joints)

  • 문정호;오영훈;임재형
    • 콘크리트학회논문집
    • /
    • 제23권2호
    • /
    • pp.177-184
    • /
    • 2011
  • 이 연구에서는 PC 구조의 단부를 연속으로 연결한 MRS(multi-ribbed moment resisting slab) 구조에 대한 해석 및 설계법을 제안하고자 하였다. MRS 구조에서는 더블티 부재가 역티보 위에서 부모멘트 철근에 의해서 연속으로 설계되므로, 부모멘트 철근이 좁은 지역에 밀집되는 문제가 발생할 수 있다. 따라서 선형 및 비선형 해석을 통하여 모멘트 분포 메커니즘을 분석하여, 적절한 설계법을 제시하였다. 또한 이 연구와 병행하여 실시한 실험 연구의 결과를 비선형상세 해석을 통하여 분석하였다. 그리고 단부구속효과 및 모멘트 재분배에 관한 연구를 위하여 비선형 골조 해석을 선택하여 변수별 연구를 수행하였다. 해석을 위한 재질 및 단면의 특성은 함께 진행된 실험 연구의 결과로부터 얻어졌으며, 비선형 골조 해석을 위한 소성힌지는 균열 모멘트, 공칭 모멘트, 부재 연성도 등의 값으로 모델링되었다. 선형 및 비선형 해석의 결과로부터 단부 회전 스프링과 부모멘트재분재를 통하여 MRS 구조의 단부 모멘트는 상당한 크기로 감소시킬 수 있음을 알 수 있었다.

초정밀 스테이지 설계 및 제어 시스템에 관한 연구 (A study of the design and control system for the ultra-precision stage)

  • 박종성;정규원
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.54-59
    • /
    • 2005
  • Recently, the ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator, and ultra-precision linear encoder, is designed and developed. The guide mechanism which consisted of flexure hinges is analyzed by Finite Element Method. And we derived the transfer function of the system in 1st order system from step responses according to the magnitude. We performed simulation for the model to tune the control gain and applied the gains to the developed system. Experimental results found that the stage can be controlled in 5 nm resolution by PID controller.

  • PDF

Wavelet based system identification for a nonlinear experimental model

  • Li, Luyu;Qin, Han;Niu, Yun
    • Smart Structures and Systems
    • /
    • 제20권4호
    • /
    • pp.415-426
    • /
    • 2017
  • Traditional experimental verification for nonlinear system identification often faces the problem of experiment model repeatability. In our research, a steel frame experimental model is developed to imitate the behavior of a single story steel frame under horizontal excitation. Two adjustable rotational dampers are used to simulate the plastic hinge effect of the damaged beam-column joint. This model is suggested as a benchmark model for nonlinear dynamics study. Since the nonlinear form provided by the damper is unknown, a Morlet wavelet based method is introduced to identify the mathematical model of this structure under different damping cases. After the model identification, earthquake excitation tests are carried out to verify the generality of the identified model. The results show the extensive applicability and effectiveness of the identification method.

초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가 (Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage)

  • 곽이구;김재열;한재호;김영석;안재신;노기웅
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.422-428
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system (100mm stroke and ${\pm}$ 10nm positioning accuracy) with single plane X-Y stage are materialized.

  • PDF

초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가 (Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage)

  • 박기형;김재열;곽이구
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.