• 제목/요약/키워드: Himawari-8

검색결과 29건 처리시간 0.027초

Development of Day Fog Detection Algorithm Based on the Optical and Textural Characteristics Using Himawari-8 Data

  • Han, Ji-Hye;Suh, Myoung-Seok;Kim, So-Hyeong
    • 대한원격탐사학회지
    • /
    • 제35권1호
    • /
    • pp.117-136
    • /
    • 2019
  • In this study, a hybrid-type of day fog detection algorithm (DFDA) was developed based on the optical and textural characteristics of fog top, using the Himawari-8 /Advanced Himawari Imager data. Supplementary data, such as temperatures of numerical weather prediction model and sea surface temperatures of operational sea surface temperature and sea ice analysis, were used for fog detection. And 10 minutes data from visibility meter from the Korea Meteorological Administration were used for a quantitative verification of the fog detection results. Normalized albedo of fog top was utilized to distinguish between fog and other objects such as clouds, land, and oceans. The normalized local standard deviation of the fog surface and temperature difference between fog top and air temperature were also assessed to separate the fog from low cloud. Initial threshold values (ITVs) for the fog detection elements were selected using hat-shaped threshold values through frequency distribution analysis of fog cases.And the ITVs were optimized through the iteration method in terms of maximization of POD and minimization of FAR. The visual inspection and a quantitative verification using a visibility meter showed that the DFDA successfully detected a wide range of fog. The quantitative verification in both training and verification cases, the average POD (FAR) was 0.75 (0.41) and 0.74 (0.46), respectively. However, sophistication of the threshold values of the detection elements, as well as utilization of other channel data are necessary as the fog detection levels vary for different fog cases(POD: 0.65-0.87, FAR: 0.30-0.53).

우리나라에서 AERONET 태양광도계 자료를 이용한 다종위성 AOD 산출물 비교평가: MODIS, VIIRS, Himawari-8, Sentinel-3의 사례연구 (A Comparison between Multiple Satellite AOD Products Using AERONET Sun Photometer Observations in South Korea: Case Study of MODIS,VIIRS, Himawari-8, and Sentinel-3)

  • 김서연;정예민;윤유정;조수빈;강종구;김근아;이양원
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.543-557
    • /
    • 2021
  • 에어로솔은 입자의 크기와 조성 및 관측센서에 따라 상이한 분광특성을 보이기 때문에, 다양한 센서의 에어로솔 산출물에 대한 비교분석이 반드시 필요하다. 그러나, 우리나라에서 다종위성의 공식적인 AOD (Aerosol Optical Depth) 산출물을 대상으로 수년간의 자료를 수집하여 정확도 비교평가를 수행한 사례는 아직 보고된 바가 없다. 이에, 본 연구에서는 2015년 1월부터 2019년 12월까지 MODIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer Suite), Himawari-8, Sentinel-3 AOD 산출물과 AERONET (Aerosol Robotic Network) 지상 태양광도계 자료의 비교분석을 통하여 위성 AOD의 성능을 평가하고, 계절적 및 지리적 차이에 따른 정확도 특성을 분석하였다. 오랜 기간 축적되어온 산출 기술에 MAIAC (Multiangle Implementation of Atmospheric Correction) 알고리듬을 추가하여 최적화된 MODIS 산출물이 가장 높은 정확도를 나타냈고(CC=0.836), VIIRS와 Himawari-8이 그보다 약간 낮은 정도의 성능을 보였으며, Sentinel-3는 비교적 최근에 발사되어 알고리듬 최적화가 아직 덜 이루어진 관계로 정확도가 낮게 나타났다. MODIS, VIIRS, Himawari-8 AOD 산출물은 계절에 따라, 그리고 도시/비도시에 따라 별다른 정확도 차이를 보이지는 않았지만, 일부 해안지역에서는 혼합화소 문제로 인하여 약간 정확도가 떨어지는 경우도 존재했다. AOD는 위성영상 대기보정의 핵심 인자이기 때문에, 본 연구의 AOD 비교평가는 향후 국토위성, 농림위성 등의 대기보정 연구에도 중요한 참고자료가 될 것으로 사료된다.

히마와리 위성의 산불방사열에너지 자료를 이용한 산불배출가스 추정: 2017년 삼척 및 강릉 산불을 사례로 (Estimation of Fire Emissions Using Fire Radiative Power (FRP) Retrieved from Himawari-8 Satellite)

  • 김대선;원명수;이양원
    • 대한원격탐사학회지
    • /
    • 제33권6_1호
    • /
    • pp.1029-1040
    • /
    • 2017
  • 산불은 다량의 온실가스를 대기 중으로 방출하는 자연재해로서, 이를 효율적으로 감시하기 위해서는 정지궤도 위성의 산불방사열에너지(fire radiative power, FRP)를 활용하는 방법이 필요하다. 본 연구에서는 2017년 5월 6일에 발생한 우리나라 삼척과 강릉 산불을 사례로, 히마와리 위성의 중적외 채널자료를 이용하여 FRP를 산출하였으며, 이를 통해 MODIS(Moderate Resolution Imaging Spectroradiometer)의 제한적인 시간해상도로는 관측이 불가능한 10분 간격의 산불 피해강도의 실시간 모니터링이 가능함을 확인하였다. 또한 히마와리 FRP를 이용하여 강릉 산불의 배출가스를 계산하였으며, 에어코리아 실측치와 비교하였을 때 거리 차에 의한 1~3시간의 지연현상과 함께, 산불배출가스의 시계열 패턴이 매우 잘 일치함을 알 수 있었다. 또한 선행연구에서 고해상도 영상분석을 통해 제시한 산불배출가스 추정량과 비교하였을 때, 100 ha당 배출량이 삼척은 약 12%, 강릉은 약 2%의 차이로 매우 유사한 결과를 나타냈다. 이는 산불 피해면적과 피해강도에 대한 직접적인 분석 없이도, 정지궤도 위성의 FRP만을 이용하여 산불배출가스의 정밀한 추정이 가능함을 의미한다. 이 연구는 향후 발사될 우리나라 정지궤도 기상위성인 GK-2A(Geostationary Korea Multi-Purpose Satellite-2A)의 산불배출가스 추정 및 에어로솔 산출에 활용될 수 있을 것으로 사료된다.

천리안 2A호와 히마와리 8호 기반 일사량 추정값과 종관기상관측망 일사량 관측값 간의 비교 (Comparison between Solar Radiation Estimates Based on GK-2A and Himawari 8 Satellite and Observed Solar Radiation at Synoptic Weather Stations)

  • 강대균;조영상;현신우;김광수
    • 한국농림기상학회지
    • /
    • 제25권1호
    • /
    • pp.28-36
    • /
    • 2023
  • 일사량은 작물 생산성 평가를 위한 작물 생육 모델의 주요 입력 변수 중 하나로 사용되지만 관측이 어려워 다른 기상 변수들에 비해 관측값의 확보가 어렵다. 천리안 2A호와 히마와리 8호 위성 일사량 자료가 제공되기 시작하면서, 작물 생육과 태양광 발전을 결합한 영농형 태양광 시설 하에서의 작물 생산성 평가를 위한 일사량 자료를 확보하기 용이해졌다. 본 연구의 목적은 이들 인공위성 일사량 자료의 신뢰도를 비교하는 것이다. 이를 위해 2020년 5월부터 10월까지 인공위성 일사량 자료를 수집하여 일별 일사량의 평균 제곱근 편차(RMSE)와 정규 평균 제곱근 편차(NRMSE)를 계산하였다. 인공위성 일사량 자료가 작물 생육 모의 결과의 신뢰도에 미치는 영향을 파악하기 위해 연구기간 동안의 일사량 누적값을 비교하였다. 본 연구의 결과 히마와리 8호 일사량 자료가 천리안 2A호 일사량 자료보다 RMSE와 NRMSE가 작은 것으로 나타났다. 누적 일사량을 비교한 결과에서도 히마와리 8호 일사량 자료 누적값이 천리안 2A호 일사량 자료 누적값보다 오차가 작았다. 본 연구의 결과는 작물 생산성 평가에 히마와리 8호 일사량 자료를 사용하는 것이 천리안 2A호 일사량 자료를 사용하는 것보다 불확도를 줄일 수 있다는 것을 시사한다. 후속 연구에서 히마와리 8호 일사량 자료를 사용한 영농형 태양광 시설 하에서의 작물 생산성 및 태양광 발전량에 대한 분석이 이루어져야 할 것이다.

일본 정지궤도 기상위성 Himawari-8을 이용한 에어로졸 광학정보 산출 및 검증 (Retrieval and Validation of Aerosol Optical Properties Using Japanese Next Generation Meteorological Satellite, Himawari-8)

  • 임현광;최명제;김미진;김준
    • 대한원격탐사학회지
    • /
    • 제32권6호
    • /
    • pp.681-691
    • /
    • 2016
  • 자외선, 가시광, 적외선 파장대역의 채널을 갖는 위성 관측에 기반한 다양한 에어로졸 정보산출 알고리즘에 대해 많은 연구가 이루어져 왔다. 본 연구에서는 최근 발사된 일본 기상위성 히마와리 8의 가시광-적외선 채널정보를 이용하여, 어두운 지표 위에서 에어로졸 광학정보를 산출하였다. 가시영역을 이용한 에어로졸 광학정보 산출은 지표신호의 정확한 제거가 매우 중요한데, 이는 최소반사도법을 사용하여 산출하였다. 본 알고리즘은 어두운 지표에서 에어로졸 광학정보를 산출을 하기에 구름, 사막 등과 같은 밝은 지표 위에서는 산출하지 않는다. AHI는 가시광채널 외에도, 다양한 적외 채널을 갖고 있어 공간 비균질성, 밝기온도차이(Brightness Temperature Difference, BTD) 등을 이용하여 구름제거가 가능하다. 밝기온도(Brightness Temperature, BT)를 이용해 하층운, 상층운 제거에 유리한 채널을 사용하여 구름을 제거하게 된다. Aerosol Optical Depth (AOD) 산출 결과로는 상관계수가 0.7, 기대오차(Expected Error, EE) 안에 있는 비율이 49%를 나타내고 있으며, 낮은 AOD에서도 정확한 산출이 이뤄지고 있음을 보이고 있다. 다만 베이징 허베이 지역에서는 에어로졸 광학두께를 과소모의하는 경향이 있는데, 이는 최소반사도법을 이용한 지표정보 산출이 실제 지표반사도보다 높게 지표면 정보를 추정하게 되기 때문으로 추정된다.

인공위성 SAR 영상 기반 태풍 중심 산정 (Estimation of Typhoon Center Using Satellite SAR Imagery)

  • 정준범;박경애;변도성;정광영;이은일
    • 한국지구과학회지
    • /
    • 제40권5호
    • /
    • pp.502-517
    • /
    • 2019
  • 지구온난화와 급속한 기후 변화는 북서 태평양 내 태풍의 특성에 오랫동안 영향을 미쳤고, 이로 인해 한반도 연안에서 치명적인 재해가 증가하고 있다. 마이크로파 센서의 일종인 Synthetic Aperature Radar (SAR)는 위성 광학 및 적외선 센서로는 바람을 구할 수 없는, 흐린 대기 조건인 태풍 주위에서 고해상도 바람장을 생산할 수 있다. SAR 자료로부터 해상풍을 산출하기 위한 Geophysical Model Functions (GMFs)에는 풍향 입력이 필수적이며, 이는 태풍 중심을 정확히 추정하는 것에 기반해야 한다. 본 연구는 태풍 중심 탐지 방법의 문제점을 개선하고 이를 해상풍 산출에 반영하기 위하여, Sentinel-1A 영상을 이용해 태풍 중심을 추정하였다. 그 결과는 한국 및 일본 기상청이 제공한 태풍 경로자료와 비교하여 검증하였고, Himawari-8 위성의 적외 영상도 활용하여 검증하였다. 태풍의 초기 중심 위치는 VH 편파를 이용해 설정하여 오차의 발생 가능성을 줄였다. 탐지된 중심은 한국 및 일본 기상청에서 제공하는 4개 태풍의 경로 자료와 평균 23.76 km의 차이를 보였다. Himawari-8 위성에서 추정된 태풍 중심에 비교했을 때 결과는 육지 근처에 위치하면서 58.73 km의 큰 차이를 보인 한 태풍을 제외하고는 평균 11.80 km의 공간 변이를 보였다. 이는 고해상도 SAR 영상이 태풍 중심을 추정하고 태풍 주위 해상풍 산출에 활용될 수 있음을 시사한다.

정지 궤도 기상 위성을 이용한 기계 학습 기반 강우 강도 추정: 한반도 여름철을 대상으로 (Rainfall Intensity Estimation Using Geostationary Satellite Data Based on Machine Learning: A Case Study in the Korean Peninsula in Summer)

  • 신예지;한대현;임정호
    • 대한원격탐사학회지
    • /
    • 제37권5_3호
    • /
    • pp.1405-1423
    • /
    • 2021
  • 강우 현상은 물 순환과 에너지 순환의 주요 요소 중 하나이며 강우량 추정은 수자원 확보와 수재해 예측 및 피해 감축에 매우 중요한 역할을 한다. 위성 기반 강우량 추정은 시공간적으로 고해상도인 자료를 통하여 넓은 지역을 연속적으로 감시할 수 있다는 장점이 있다. 본 연구에서는 Himawari-8 Advanced Himawari Imager(AHI) 수증기 채널(6.7 ㎛), 적외 채널(10.8 ㎛)과 기상 레이더 Column Max (CMAX) 합성장을 이용하여 기계학습 기반 정량적 강우량 추정 모델을 개발하였다. 기계학습 기법으로는 랜덤 포레스트(Random Forest, RF)를 사용하였으며 기상 레이더 반사도(dBZ)와 Z-R식으로 변환한 강우강도(mm/hr)를 타겟으로 하는 모델을 구축하여 비교하였다. 레이더 강우강도를 통해 검증하였을 때 임계성공지수(Critical Success Index, CSI)는 0.34, Mean-Absolute-Error (MAE) 4.82 mm/hr였다. GeoKompsat-2(GK-2A) 강우강도 산출물, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) 산출물과 비교하였을 때 강우 유무 분류에서 CSI 21.73%, 10.81%, 강우강도 정량적 평가에서 MAE 31.33%, 23.49% 높은 성능을 보였다. 강우량 산출물을 지도화 한 결과, 실제 강우강도 분포와 유사한 분포를 모의하여 기존 산출물 대비 높은 정확도의 강우량을 추정했다.

GOCI와 AHI 자료를 활용한 에어로졸 광학두께 합성장 산출 연구 (Fusion of Aerosol Optical Depth from the GOCI and the AHI Observations)

  • 강형우;최원이;박정현;김세린;이한림
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.861-870
    • /
    • 2021
  • 본 연구에서는 COMS (Communication, Oceanography and Meteorology Satellite) 위성의 GOCI(Geostationary Ocean Color Imager) 센서와 Himawari-8 위성의 AHI (Advanced Himawari Imager) 센서에서 산출되는 에어로졸 광학두께 (Aerosol Optical Depth; AOD)를 활용하여 단일화된 AOD 합성장을 생산하였다. 위성 간의 공간해상도와 위치좌표계가 다르기 때문에 이를 맞춰주는 전처리 작업을 선행하였다. 이후 지상관측 기반인 AERONET (AErosol RObotic NETwork)의 레벨 1.5 AOD 자료를 사용하여 각 위성과 AERONET과의 상관관계 분석 및 추세를 보간하여 기존 위성 AOD 보다 정확한 위성 AOD 자료를 생산하였다. 이후 합성과정을 진행하며 최종적으로 시공간적으로 더 완벽하고 정확한 AOD 합성장을 생산하였다. 생산된 AOD 합성장의 제곱근 평균 오차(Root Mean Square Error; RMSE)는 0.13, 평균 편향(mean bias)는 0.05로, 기존의 GOCI AOD (RMSE: 0.15, Mean bias: 0.11)와 AHI AOD (RMSE: 0.15, Mean bias: 0.05) 보다 나은 성능을 보였다. 또한 합성된 AOD는 단일위성에서 구름으로 인하여 관측되지 못한 지역에서 시공간적으로 보다 완벽하게 생산되었음을 확인하였다.

Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시 (Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images)

  • 이시현;강유진;성태준;임정호
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.979-995
    • /
    • 2023
  • 산불은 예측이 어려운 재해이기 때문에 실시간 모니터링을 통해 빠르게 대응하는 것이 중요하며, 정지 궤도 위성 영상은 광역을 짧은 시간 간격으로 모니터링할 수 있어 산불 탐지 분야에 활발히 이용되고 있다. 기존의 위성 영상 기반 산불 탐지 알고리즘은 밝기 온도의 통계량 분석을 통한 임계값 기반으로 이상치를 탐지하는 방향으로 진행되어 왔다. 그러나 강도가 약한 산불을 탐지하기 어렵거나, 적절한 임계값 설정의 어려움으로 일반화 성능이 저하되는 한계점이 있어 최근에는 기계학습을 이용한 산불 탐지 알고리즘들이 제시되고 있다. 현재까지는 random forest, VanillaConvolutional neural network (CNN), U-net 구조 등의 비교적 간단한 기법이 적용되고 있다. 따라서, 본 연구에서는 정지궤도 위성인 Advanced Himawari Imager를 이용하여 동아시아와 호주를 대상으로 State of the Art (SOTA)딥러닝 기법을 적용한 산불 탐지 알고리즘을 개발하고자 하였다. SOTA 모델은 EfficientNet과 lion optimizer를 적용하여 개발하고, Vanilla CNN 구조를 사용한 모델과 산불 탐지 결과를 비교하였다. EfficientNet은 동아시아와 호주에서 0.88 및 0.83의 F1-score를 기록함으로써 CNN (동아시아: 0.83, 호주: 0.78)에 비해 뛰어난 성능을 입증하였다. EfficientNet에 불균형 문제 해결을 위한 weighted loss, equal sampling, image augmentation 기법 적용 시, 동아시아와 호주에서 각각 0.92와 0.84의 F1-score를 기록함으로써 적용 전(동아시아: 0.88, 호주: 0.83)에 비하여 성능이 향상되었음을 확인하였다. 본 연구를 통하여 제시된 SOTA 딥러닝 기법의 산불 탐지에의 적용 가능성과 딥러닝 모델의 성능 향상을 위해 고려해야 할 방향은 향후 산불탐지 분야에 대한 딥러닝 적용에 도움이 될 것으로 기대된다.

Uncertainty analysis of BRDF Modeling Using 6S Simulations and Monte-Carlo Method

  • Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Jin, Donghyun;Jung, Daeseong;Sim, Suyoung;Han, Kyung-Soo
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.161-167
    • /
    • 2021
  • This paper presents the method to quantitatively evaluate the uncertainty of the semi-empirical Bidirectional Reflectance Distribution Function (BRDF) model for Himawari-8/AHI. The uncertainty of BRDF modeling was affected by various issues such as assumption of model and number of observations, thus, it is difficult that evaluating the performance of BRDF modeling using simple uncertainty equations. Therefore, in this paper, Monte-Carlo method, which is most dependable method to analyze dynamic complex systems through iterative simulation, was used. The 1,000 input datasets for analyzing the uncertainty of BRDF modeling were generated using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) Radiative Transfer Model (RTM) simulation with MODerate Resolution Imaging Spectroradiometer (MODIS) BRDF product. Then, we randomly selected data according to the number of observations from 4 to 35 in the input dataset and performed BRDF modeling using them. Finally, the uncertainty was calculated by comparing reproduced surface reflectance through the BRDF model and simulated surface reflectance using 6S RTM and expressed as bias and root-mean-square-error (RMSE). The bias was negative for all observations and channels, but was very small within 0.01. RMSE showed a tendency to decrease as the number of observations increased, and showed a stable value within 0.05 in all channels. In addition, our results show that when the viewing zenith angle is 40° or more, the RMSE tends to increase slightly. This information can be utilized in the uncertainty analysis of subsequently retrieved geophysical variables.