In this study, a hybrid-type of day fog detection algorithm (DFDA) was developed based on the optical and textural characteristics of fog top, using the Himawari-8 /Advanced Himawari Imager data. Supplementary data, such as temperatures of numerical weather prediction model and sea surface temperatures of operational sea surface temperature and sea ice analysis, were used for fog detection. And 10 minutes data from visibility meter from the Korea Meteorological Administration were used for a quantitative verification of the fog detection results. Normalized albedo of fog top was utilized to distinguish between fog and other objects such as clouds, land, and oceans. The normalized local standard deviation of the fog surface and temperature difference between fog top and air temperature were also assessed to separate the fog from low cloud. Initial threshold values (ITVs) for the fog detection elements were selected using hat-shaped threshold values through frequency distribution analysis of fog cases.And the ITVs were optimized through the iteration method in terms of maximization of POD and minimization of FAR. The visual inspection and a quantitative verification using a visibility meter showed that the DFDA successfully detected a wide range of fog. The quantitative verification in both training and verification cases, the average POD (FAR) was 0.75 (0.41) and 0.74 (0.46), respectively. However, sophistication of the threshold values of the detection elements, as well as utilization of other channel data are necessary as the fog detection levels vary for different fog cases(POD: 0.65-0.87, FAR: 0.30-0.53).
에어로솔은 입자의 크기와 조성 및 관측센서에 따라 상이한 분광특성을 보이기 때문에, 다양한 센서의 에어로솔 산출물에 대한 비교분석이 반드시 필요하다. 그러나, 우리나라에서 다종위성의 공식적인 AOD (Aerosol Optical Depth) 산출물을 대상으로 수년간의 자료를 수집하여 정확도 비교평가를 수행한 사례는 아직 보고된 바가 없다. 이에, 본 연구에서는 2015년 1월부터 2019년 12월까지 MODIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer Suite), Himawari-8, Sentinel-3 AOD 산출물과 AERONET (Aerosol Robotic Network) 지상 태양광도계 자료의 비교분석을 통하여 위성 AOD의 성능을 평가하고, 계절적 및 지리적 차이에 따른 정확도 특성을 분석하였다. 오랜 기간 축적되어온 산출 기술에 MAIAC (Multiangle Implementation of Atmospheric Correction) 알고리듬을 추가하여 최적화된 MODIS 산출물이 가장 높은 정확도를 나타냈고(CC=0.836), VIIRS와 Himawari-8이 그보다 약간 낮은 정도의 성능을 보였으며, Sentinel-3는 비교적 최근에 발사되어 알고리듬 최적화가 아직 덜 이루어진 관계로 정확도가 낮게 나타났다. MODIS, VIIRS, Himawari-8 AOD 산출물은 계절에 따라, 그리고 도시/비도시에 따라 별다른 정확도 차이를 보이지는 않았지만, 일부 해안지역에서는 혼합화소 문제로 인하여 약간 정확도가 떨어지는 경우도 존재했다. AOD는 위성영상 대기보정의 핵심 인자이기 때문에, 본 연구의 AOD 비교평가는 향후 국토위성, 농림위성 등의 대기보정 연구에도 중요한 참고자료가 될 것으로 사료된다.
산불은 다량의 온실가스를 대기 중으로 방출하는 자연재해로서, 이를 효율적으로 감시하기 위해서는 정지궤도 위성의 산불방사열에너지(fire radiative power, FRP)를 활용하는 방법이 필요하다. 본 연구에서는 2017년 5월 6일에 발생한 우리나라 삼척과 강릉 산불을 사례로, 히마와리 위성의 중적외 채널자료를 이용하여 FRP를 산출하였으며, 이를 통해 MODIS(Moderate Resolution Imaging Spectroradiometer)의 제한적인 시간해상도로는 관측이 불가능한 10분 간격의 산불 피해강도의 실시간 모니터링이 가능함을 확인하였다. 또한 히마와리 FRP를 이용하여 강릉 산불의 배출가스를 계산하였으며, 에어코리아 실측치와 비교하였을 때 거리 차에 의한 1~3시간의 지연현상과 함께, 산불배출가스의 시계열 패턴이 매우 잘 일치함을 알 수 있었다. 또한 선행연구에서 고해상도 영상분석을 통해 제시한 산불배출가스 추정량과 비교하였을 때, 100 ha당 배출량이 삼척은 약 12%, 강릉은 약 2%의 차이로 매우 유사한 결과를 나타냈다. 이는 산불 피해면적과 피해강도에 대한 직접적인 분석 없이도, 정지궤도 위성의 FRP만을 이용하여 산불배출가스의 정밀한 추정이 가능함을 의미한다. 이 연구는 향후 발사될 우리나라 정지궤도 기상위성인 GK-2A(Geostationary Korea Multi-Purpose Satellite-2A)의 산불배출가스 추정 및 에어로솔 산출에 활용될 수 있을 것으로 사료된다.
일사량은 작물 생산성 평가를 위한 작물 생육 모델의 주요 입력 변수 중 하나로 사용되지만 관측이 어려워 다른 기상 변수들에 비해 관측값의 확보가 어렵다. 천리안 2A호와 히마와리 8호 위성 일사량 자료가 제공되기 시작하면서, 작물 생육과 태양광 발전을 결합한 영농형 태양광 시설 하에서의 작물 생산성 평가를 위한 일사량 자료를 확보하기 용이해졌다. 본 연구의 목적은 이들 인공위성 일사량 자료의 신뢰도를 비교하는 것이다. 이를 위해 2020년 5월부터 10월까지 인공위성 일사량 자료를 수집하여 일별 일사량의 평균 제곱근 편차(RMSE)와 정규 평균 제곱근 편차(NRMSE)를 계산하였다. 인공위성 일사량 자료가 작물 생육 모의 결과의 신뢰도에 미치는 영향을 파악하기 위해 연구기간 동안의 일사량 누적값을 비교하였다. 본 연구의 결과 히마와리 8호 일사량 자료가 천리안 2A호 일사량 자료보다 RMSE와 NRMSE가 작은 것으로 나타났다. 누적 일사량을 비교한 결과에서도 히마와리 8호 일사량 자료 누적값이 천리안 2A호 일사량 자료 누적값보다 오차가 작았다. 본 연구의 결과는 작물 생산성 평가에 히마와리 8호 일사량 자료를 사용하는 것이 천리안 2A호 일사량 자료를 사용하는 것보다 불확도를 줄일 수 있다는 것을 시사한다. 후속 연구에서 히마와리 8호 일사량 자료를 사용한 영농형 태양광 시설 하에서의 작물 생산성 및 태양광 발전량에 대한 분석이 이루어져야 할 것이다.
자외선, 가시광, 적외선 파장대역의 채널을 갖는 위성 관측에 기반한 다양한 에어로졸 정보산출 알고리즘에 대해 많은 연구가 이루어져 왔다. 본 연구에서는 최근 발사된 일본 기상위성 히마와리 8의 가시광-적외선 채널정보를 이용하여, 어두운 지표 위에서 에어로졸 광학정보를 산출하였다. 가시영역을 이용한 에어로졸 광학정보 산출은 지표신호의 정확한 제거가 매우 중요한데, 이는 최소반사도법을 사용하여 산출하였다. 본 알고리즘은 어두운 지표에서 에어로졸 광학정보를 산출을 하기에 구름, 사막 등과 같은 밝은 지표 위에서는 산출하지 않는다. AHI는 가시광채널 외에도, 다양한 적외 채널을 갖고 있어 공간 비균질성, 밝기온도차이(Brightness Temperature Difference, BTD) 등을 이용하여 구름제거가 가능하다. 밝기온도(Brightness Temperature, BT)를 이용해 하층운, 상층운 제거에 유리한 채널을 사용하여 구름을 제거하게 된다. Aerosol Optical Depth (AOD) 산출 결과로는 상관계수가 0.7, 기대오차(Expected Error, EE) 안에 있는 비율이 49%를 나타내고 있으며, 낮은 AOD에서도 정확한 산출이 이뤄지고 있음을 보이고 있다. 다만 베이징 허베이 지역에서는 에어로졸 광학두께를 과소모의하는 경향이 있는데, 이는 최소반사도법을 이용한 지표정보 산출이 실제 지표반사도보다 높게 지표면 정보를 추정하게 되기 때문으로 추정된다.
지구온난화와 급속한 기후 변화는 북서 태평양 내 태풍의 특성에 오랫동안 영향을 미쳤고, 이로 인해 한반도 연안에서 치명적인 재해가 증가하고 있다. 마이크로파 센서의 일종인 Synthetic Aperature Radar (SAR)는 위성 광학 및 적외선 센서로는 바람을 구할 수 없는, 흐린 대기 조건인 태풍 주위에서 고해상도 바람장을 생산할 수 있다. SAR 자료로부터 해상풍을 산출하기 위한 Geophysical Model Functions (GMFs)에는 풍향 입력이 필수적이며, 이는 태풍 중심을 정확히 추정하는 것에 기반해야 한다. 본 연구는 태풍 중심 탐지 방법의 문제점을 개선하고 이를 해상풍 산출에 반영하기 위하여, Sentinel-1A 영상을 이용해 태풍 중심을 추정하였다. 그 결과는 한국 및 일본 기상청이 제공한 태풍 경로자료와 비교하여 검증하였고, Himawari-8 위성의 적외 영상도 활용하여 검증하였다. 태풍의 초기 중심 위치는 VH 편파를 이용해 설정하여 오차의 발생 가능성을 줄였다. 탐지된 중심은 한국 및 일본 기상청에서 제공하는 4개 태풍의 경로 자료와 평균 23.76 km의 차이를 보였다. Himawari-8 위성에서 추정된 태풍 중심에 비교했을 때 결과는 육지 근처에 위치하면서 58.73 km의 큰 차이를 보인 한 태풍을 제외하고는 평균 11.80 km의 공간 변이를 보였다. 이는 고해상도 SAR 영상이 태풍 중심을 추정하고 태풍 주위 해상풍 산출에 활용될 수 있음을 시사한다.
강우 현상은 물 순환과 에너지 순환의 주요 요소 중 하나이며 강우량 추정은 수자원 확보와 수재해 예측 및 피해 감축에 매우 중요한 역할을 한다. 위성 기반 강우량 추정은 시공간적으로 고해상도인 자료를 통하여 넓은 지역을 연속적으로 감시할 수 있다는 장점이 있다. 본 연구에서는 Himawari-8 Advanced Himawari Imager(AHI) 수증기 채널(6.7 ㎛), 적외 채널(10.8 ㎛)과 기상 레이더 Column Max (CMAX) 합성장을 이용하여 기계학습 기반 정량적 강우량 추정 모델을 개발하였다. 기계학습 기법으로는 랜덤 포레스트(Random Forest, RF)를 사용하였으며 기상 레이더 반사도(dBZ)와 Z-R식으로 변환한 강우강도(mm/hr)를 타겟으로 하는 모델을 구축하여 비교하였다. 레이더 강우강도를 통해 검증하였을 때 임계성공지수(Critical Success Index, CSI)는 0.34, Mean-Absolute-Error (MAE) 4.82 mm/hr였다. GeoKompsat-2(GK-2A) 강우강도 산출물, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) 산출물과 비교하였을 때 강우 유무 분류에서 CSI 21.73%, 10.81%, 강우강도 정량적 평가에서 MAE 31.33%, 23.49% 높은 성능을 보였다. 강우량 산출물을 지도화 한 결과, 실제 강우강도 분포와 유사한 분포를 모의하여 기존 산출물 대비 높은 정확도의 강우량을 추정했다.
본 연구에서는 COMS (Communication, Oceanography and Meteorology Satellite) 위성의 GOCI(Geostationary Ocean Color Imager) 센서와 Himawari-8 위성의 AHI (Advanced Himawari Imager) 센서에서 산출되는 에어로졸 광학두께 (Aerosol Optical Depth; AOD)를 활용하여 단일화된 AOD 합성장을 생산하였다. 위성 간의 공간해상도와 위치좌표계가 다르기 때문에 이를 맞춰주는 전처리 작업을 선행하였다. 이후 지상관측 기반인 AERONET (AErosol RObotic NETwork)의 레벨 1.5 AOD 자료를 사용하여 각 위성과 AERONET과의 상관관계 분석 및 추세를 보간하여 기존 위성 AOD 보다 정확한 위성 AOD 자료를 생산하였다. 이후 합성과정을 진행하며 최종적으로 시공간적으로 더 완벽하고 정확한 AOD 합성장을 생산하였다. 생산된 AOD 합성장의 제곱근 평균 오차(Root Mean Square Error; RMSE)는 0.13, 평균 편향(mean bias)는 0.05로, 기존의 GOCI AOD (RMSE: 0.15, Mean bias: 0.11)와 AHI AOD (RMSE: 0.15, Mean bias: 0.05) 보다 나은 성능을 보였다. 또한 합성된 AOD는 단일위성에서 구름으로 인하여 관측되지 못한 지역에서 시공간적으로 보다 완벽하게 생산되었음을 확인하였다.
산불은 예측이 어려운 재해이기 때문에 실시간 모니터링을 통해 빠르게 대응하는 것이 중요하며, 정지 궤도 위성 영상은 광역을 짧은 시간 간격으로 모니터링할 수 있어 산불 탐지 분야에 활발히 이용되고 있다. 기존의 위성 영상 기반 산불 탐지 알고리즘은 밝기 온도의 통계량 분석을 통한 임계값 기반으로 이상치를 탐지하는 방향으로 진행되어 왔다. 그러나 강도가 약한 산불을 탐지하기 어렵거나, 적절한 임계값 설정의 어려움으로 일반화 성능이 저하되는 한계점이 있어 최근에는 기계학습을 이용한 산불 탐지 알고리즘들이 제시되고 있다. 현재까지는 random forest, VanillaConvolutional neural network (CNN), U-net 구조 등의 비교적 간단한 기법이 적용되고 있다. 따라서, 본 연구에서는 정지궤도 위성인 Advanced Himawari Imager를 이용하여 동아시아와 호주를 대상으로 State of the Art (SOTA)딥러닝 기법을 적용한 산불 탐지 알고리즘을 개발하고자 하였다. SOTA 모델은 EfficientNet과 lion optimizer를 적용하여 개발하고, Vanilla CNN 구조를 사용한 모델과 산불 탐지 결과를 비교하였다. EfficientNet은 동아시아와 호주에서 0.88 및 0.83의 F1-score를 기록함으로써 CNN (동아시아: 0.83, 호주: 0.78)에 비해 뛰어난 성능을 입증하였다. EfficientNet에 불균형 문제 해결을 위한 weighted loss, equal sampling, image augmentation 기법 적용 시, 동아시아와 호주에서 각각 0.92와 0.84의 F1-score를 기록함으로써 적용 전(동아시아: 0.88, 호주: 0.83)에 비하여 성능이 향상되었음을 확인하였다. 본 연구를 통하여 제시된 SOTA 딥러닝 기법의 산불 탐지에의 적용 가능성과 딥러닝 모델의 성능 향상을 위해 고려해야 할 방향은 향후 산불탐지 분야에 대한 딥러닝 적용에 도움이 될 것으로 기대된다.
This paper presents the method to quantitatively evaluate the uncertainty of the semi-empirical Bidirectional Reflectance Distribution Function (BRDF) model for Himawari-8/AHI. The uncertainty of BRDF modeling was affected by various issues such as assumption of model and number of observations, thus, it is difficult that evaluating the performance of BRDF modeling using simple uncertainty equations. Therefore, in this paper, Monte-Carlo method, which is most dependable method to analyze dynamic complex systems through iterative simulation, was used. The 1,000 input datasets for analyzing the uncertainty of BRDF modeling were generated using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) Radiative Transfer Model (RTM) simulation with MODerate Resolution Imaging Spectroradiometer (MODIS) BRDF product. Then, we randomly selected data according to the number of observations from 4 to 35 in the input dataset and performed BRDF modeling using them. Finally, the uncertainty was calculated by comparing reproduced surface reflectance through the BRDF model and simulated surface reflectance using 6S RTM and expressed as bias and root-mean-square-error (RMSE). The bias was negative for all observations and channels, but was very small within 0.01. RMSE showed a tendency to decrease as the number of observations increased, and showed a stable value within 0.05 in all channels. In addition, our results show that when the viewing zenith angle is 40° or more, the RMSE tends to increase slightly. This information can be utilized in the uncertainty analysis of subsequently retrieved geophysical variables.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.