• 제목/요약/키워드: Hill's muscle model

검색결과 6건 처리시간 0.019초

최적화기법에 의한 근육-건 모델 파라미터들의 추정 (Estimation of Muscle-tendon Model Parameters Based on a Numeric Optimization)

  • 남윤수
    • 한국정밀공학회지
    • /
    • 제26권6호
    • /
    • pp.122-130
    • /
    • 2009
  • The analysis of human movement requires the knowledge of the Hill type muscle parameters, the muscle-tendon and moment arm length change as a function of joint angles. However, values of a subject's muscle parameters are very difficult to identify. It turns out from a sensitivity analysis that the tendon slack length and maximum muscle force are the two critical parameters among the Hill-type muscle model. Therefore, it could be claimed that the variation of the tendon slack length and maximum muscle force from the Delp's reference data will change the muscle characteristics of a subject remarkably. A numeric optimization method to search these tendon parameters specific to a subject is proposed, and the accuracy of the developed algorithm is evaluated through a numerical simulation.

MVC 상태에서의 무릎관절 모멘트 추정을 위한 모델 개발 (Development of a Model for the Estimation of Knee Joint Moment at MVC)

  • 남윤수;이우은
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권3호
    • /
    • pp.222-230
    • /
    • 2008
  • This paper introduces a method of estimating the knee joint moment developed during MVC. By combining the Hill-type muscle model and analytic results on moment arm and musculotendon length change as a function of hip and knee joint angle, the knee joint moment at a specific knee joint angle during MVC is determined. Many differences between the estimated results and the experimental data are noted. It is believed that these differences originate from inaccurate information on the muscle-tendon parameters. The establishment of exact values for the subject's muscle parameters is almost impossible task. However, sensitivity analysis shows that the tendon slack length is the most critical parameter when applying the Hill-type muscle model. The effect of a change of this parameter on the muscle length force relationship is analyzed in detail.

DEVELOPMENT OF FINITE ELEMENT HUMAN NECK MODEL FOR VEHICLE SAFETY SIMULATION

  • Lee, I.H.;Choi, H.Y.;Lee, J.H.;Han, D.C.
    • International Journal of Automotive Technology
    • /
    • 제5권1호
    • /
    • pp.33-46
    • /
    • 2004
  • A finite element model development of a 50th percentile male cervical spine is presented in this paper. The model consists of rigid, geometrically accurate vertebrae held together with deformable intervertibral disks, facet joints, and ligaments modeled as a series of nonlinear springs. These deformable structures were rigorously tuned, through failure, to mimic existing experimental data; first as functional unit characterizations at three cervical levels and then as a fully assembled c-spine using the experimental data from Duke University and other data in the NHTSA database. After obtaining satisfactory validation of the performance of the assembled ligamentous cervical spine against available experimental data, 22 cervical muscle pairs, representing the majority of the neck's musculature, were added to the model. Hill's muscle model was utilized to generate muscle forces within the assembled cervical model. The muscle activation level was assumed to be the same for all modeled muscles and the degree of activation was set to correctly predict available human volunteer experimental data from NBDL. The validated model is intended for use as a post processor of dummy measurement within the simulated injury monitor (SIMon) concept being developed by NHTSA where measured kinematics and kinetic data obtained from a dummy during a crash test will serve as the boundary conditions to "drive" the finite element model of the neck. The post-processor will then interrogate the model to determine whether any ligament have exceeded its known failure limit. The model will allow a direct assessment of potential injury, its degree and location thus eliminating the need for global correlates such as Nij.

다물체 모델링과 근의 특성을 이용한 무릎뼈에 가해지는 압력의 불확실성 추정 연구 (Analysis of the Uncertainty of Compressive Forces Acting on the Patella by Using Multi-Body Modeling and Muscle Mechanics)

  • 남궁홍;유홍희
    • 대한기계학회논문집A
    • /
    • 제35권7호
    • /
    • pp.785-790
    • /
    • 2011
  • 본 연구에서는 인체의 하지부를 다물체 시스템으로 모델링하여 무릎관절에 걸리는 구속력의 불확실성을 추정하였다. 일반적으로 근육의 기계적인 특성은 Hill-type muscle model 이 사용되며 여기에 적용되는 인체의 특성과 해부학적인 데이터는 지난 십 수년 동안 크게 발전되었다. 그러나 정확하게 그것들을 안다는 것은 불가능하며 개인마다 다른점을 고려해야 할 필요가 있다. 본 논문에서는 Hill-type muscle model 과 함께 인체의 해부학적인 데이터를 통계 방법론을 이용하여 무릎 관절에 걸리는 구속력의 불확실성을 추정하였다. 초기 앉아있는 자세에서 일어서는 과정에서 작용하는 구속력을 추정하였으며 이때 인체 하지 근육의 특성을 musculoskeleton-actuator 를 이용하여 해석하였다.

Length-tension and velocity-force relationships of the torso extensors:Dynamic biomechanical modeling considerations

  • Raschke, U.;Chaffin, D.B.
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.137-140
    • /
    • 1996
  • This study investigated the length-tension and velocity-force relations of the torso erectors. A myoelectric based approach was used wherein a dynamic biomechanical model incorporating active and passive tissue charactreistics provided music kinematic estimates during controlled sagittal plan extension motions. A double linear optimization formulation from the literatured provided muscle tension estimates. The data supported a linear length-tension relation toward full flexion for both the erector spinae and latissimus muscles. Velocity trends agreed with that predicted by Hill's exponential relation. The results have implications for muscle tension estimation in biomechanical torso modeling, and suggest a possible low back pain injury mechanism.

  • PDF