• Title/Summary/Keyword: Hill's muscle model

Search Result 6, Processing Time 0.023 seconds

Estimation of Muscle-tendon Model Parameters Based on a Numeric Optimization (최적화기법에 의한 근육-건 모델 파라미터들의 추정)

  • Nam, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.122-130
    • /
    • 2009
  • The analysis of human movement requires the knowledge of the Hill type muscle parameters, the muscle-tendon and moment arm length change as a function of joint angles. However, values of a subject's muscle parameters are very difficult to identify. It turns out from a sensitivity analysis that the tendon slack length and maximum muscle force are the two critical parameters among the Hill-type muscle model. Therefore, it could be claimed that the variation of the tendon slack length and maximum muscle force from the Delp's reference data will change the muscle characteristics of a subject remarkably. A numeric optimization method to search these tendon parameters specific to a subject is proposed, and the accuracy of the developed algorithm is evaluated through a numerical simulation.

Development of a Model for the Estimation of Knee Joint Moment at MVC (MVC 상태에서의 무릎관절 모멘트 추정을 위한 모델 개발)

  • Nam, Yoon-Su;Lee, Woo-Eun
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.222-230
    • /
    • 2008
  • This paper introduces a method of estimating the knee joint moment developed during MVC. By combining the Hill-type muscle model and analytic results on moment arm and musculotendon length change as a function of hip and knee joint angle, the knee joint moment at a specific knee joint angle during MVC is determined. Many differences between the estimated results and the experimental data are noted. It is believed that these differences originate from inaccurate information on the muscle-tendon parameters. The establishment of exact values for the subject's muscle parameters is almost impossible task. However, sensitivity analysis shows that the tendon slack length is the most critical parameter when applying the Hill-type muscle model. The effect of a change of this parameter on the muscle length force relationship is analyzed in detail.

DEVELOPMENT OF FINITE ELEMENT HUMAN NECK MODEL FOR VEHICLE SAFETY SIMULATION

  • Lee, I.H.;Choi, H.Y.;Lee, J.H.;Han, D.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.33-46
    • /
    • 2004
  • A finite element model development of a 50th percentile male cervical spine is presented in this paper. The model consists of rigid, geometrically accurate vertebrae held together with deformable intervertibral disks, facet joints, and ligaments modeled as a series of nonlinear springs. These deformable structures were rigorously tuned, through failure, to mimic existing experimental data; first as functional unit characterizations at three cervical levels and then as a fully assembled c-spine using the experimental data from Duke University and other data in the NHTSA database. After obtaining satisfactory validation of the performance of the assembled ligamentous cervical spine against available experimental data, 22 cervical muscle pairs, representing the majority of the neck's musculature, were added to the model. Hill's muscle model was utilized to generate muscle forces within the assembled cervical model. The muscle activation level was assumed to be the same for all modeled muscles and the degree of activation was set to correctly predict available human volunteer experimental data from NBDL. The validated model is intended for use as a post processor of dummy measurement within the simulated injury monitor (SIMon) concept being developed by NHTSA where measured kinematics and kinetic data obtained from a dummy during a crash test will serve as the boundary conditions to "drive" the finite element model of the neck. The post-processor will then interrogate the model to determine whether any ligament have exceeded its known failure limit. The model will allow a direct assessment of potential injury, its degree and location thus eliminating the need for global correlates such as Nij.

Analysis of the Uncertainty of Compressive Forces Acting on the Patella by Using Multi-Body Modeling and Muscle Mechanics (다물체 모델링과 근의 특성을 이용한 무릎뼈에 가해지는 압력의 불확실성 추정 연구)

  • NamGoong, Hong;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.785-790
    • /
    • 2011
  • The goal of this study is to estimate the force acting on the knee joint in the human body by using the Hilltype muscle model based on a musculoskeletal model of the human lower extremity in the sagittal plane. For estimating the force applied, the human leg is modeled using multi-body modeling. This leg model comprises biarticular muscles acting on two joints of the upper and lower limbs, and the muscles include some of the major muscles such as the hamstring. In order to analyze the uncertainty of the applied forces acting on the knee joint, statistical distributions of human body, leg part, parameters are required and to obtain the parameter's statistical characteristic of the part sample survey method is employed. Finally, by using the sensitivity information of the parameters, the force acting on the knee joint can be estimated.

Length-tension and velocity-force relationships of the torso extensors:Dynamic biomechanical modeling considerations

  • Raschke, U.;Chaffin, D.B.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.137-140
    • /
    • 1996
  • This study investigated the length-tension and velocity-force relations of the torso erectors. A myoelectric based approach was used wherein a dynamic biomechanical model incorporating active and passive tissue charactreistics provided music kinematic estimates during controlled sagittal plan extension motions. A double linear optimization formulation from the literatured provided muscle tension estimates. The data supported a linear length-tension relation toward full flexion for both the erector spinae and latissimus muscles. Velocity trends agreed with that predicted by Hill's exponential relation. The results have implications for muscle tension estimation in biomechanical torso modeling, and suggest a possible low back pain injury mechanism.

  • PDF