• Title/Summary/Keyword: Hilbert geometry

Search Result 22, Processing Time 0.021 seconds

On the History of the Birth of Finsler Geometry at Göttingen (괴팅겐에서 핀슬러 기하가 탄생한 역사)

  • Won, Dae Yeon
    • Journal for History of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.133-149
    • /
    • 2015
  • Arrivals of Hilbert and Minkowski at $G\ddot{o}ttingen$ put mathematical science there in full flourish. They further extended its strong mathematical tradition of Gauss and Riemann. Though Riemann envisioned Finsler metric and gave an example of it in his inaugural lecture of 1854, Finsler geometry was officially named after Minkowski's academic grandson Finsler. His tool to generalize Riemannian geometry was the calculus of variations of which his advisor $Carath\acute{e}odory$ was a master. Another $G\ddot{o}ttingen$ graduate Busemann regraded Finsler geometry as a special case of geometry of metric spaces. He was a student of Courant who was a student of Hilbert. These figures all at $G\ddot{o}ttingen$ created and developed Finsler geometry in its early stages. In this paper, we investigate history of works on Finsler geometry contributed by these frontiers.

Proof of the Pythagorean Theorem from the Viewpoint of the Mathematical History (수학사적 관점에서 본 피타고라스 정리의 증명)

  • Choi, Young-Gi;Lee, Ji-Hyun
    • School Mathematics
    • /
    • v.9 no.4
    • /
    • pp.523-533
    • /
    • 2007
  • This article focused the meaning of Pythagoras' and Euclid's proof about the Pythagorean theorem in a historical and mathematical perspective. Pythagoras' proof using similarity is based on the arithmetic assumption about commensurability. However, Euclid proved the Pythagorean theorem again only using the concept of dissection-rearrangement that is purely geometric so that it does not need commensurability. Pythagoras' and Euclid's different approaches to geometry have to do with Birkhoff's axiom system and Hilbert's axiom system in the school geometry Birkhoff proposed the new axioms for plane geometry accepting real number that is strictly defined. Thus Birkhoff's metrical approach can be defined as a Pythagorean approach that developed geometry based on number. On the other hand, Hilbert succeeded Euclid who had pursued pure geometry that did not depend on number. The difference between the proof using similarity and dissection-rearrangement is related to the unsolved problem in the geometry curriculum that is conflict of Euclid's conventional synthetical approach and modern mathematical approach to geometry.

  • PDF

Pythagorean Theorem II : Relationship to the Parallel Axiom (피타고라스의 정리 II : 평행공리와의 관계)

  • Jo, Kyeonghee;Yang, Seong-Deog
    • Journal for History of Mathematics
    • /
    • v.32 no.5
    • /
    • pp.241-255
    • /
    • 2019
  • The proposition that the parallel axiom and the Pythagorean theorem are equivalent in the Hilbert geometry is true when the Archimedean axiom is assumed. In this article, we examine some specific plane geometries to see the existence of the non-archimidean Hilbert geometry in which the Pythagorean theorem holds but the parallel axiom does not. Furthermore we observe that the Pythagorean theorem is equivalent to the fact that the Hilbert geometry is actually a semi-Euclidean geometry.

Pythagorean Theorem I: In non-Hilbert Geometry (피타고라스의 정리 I: 비-힐베르트 기하에서)

  • Jo, Kyeonghee;Yang, Seong-Deog
    • Journal for History of Mathematics
    • /
    • v.31 no.6
    • /
    • pp.315-337
    • /
    • 2018
  • Pythagorean thoerem exists in several equivalent forms in the Euclidean plane, that is, the Hilbert plane which in addition satisfies the parallel axiom. In this article, we investigate the truthness and mutual relationships of those propositions in various non-Hilbert planes which satisfy the parallel axiom and all the Hilbert axioms except the SAS axiom.

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF

NOTE ON THE DECOMPOSITION OF STATES

  • Hyeon, Donghoon;Kim, Jaekwang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1221-1230
    • /
    • 2018
  • We derive a sharp decomposition formula for the state polytope of the Hilbert point and the Hilbert-Mumford index of reducible varieties by using the decomposition of characters and basic convex geometry. This proof captures the essence of the decomposition of the state polytopes in general, and considerably simplifies an earlier proof by the authors which uses a careful analysis of initial ideals of reducible varieties.

MULTIPLE SOLUTIONS FOR THE NONLINEAR PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.251-259
    • /
    • 2009
  • We investigate the multiple solutions for the nonlinear parabolic boundary value problem with jumping nonlinearity crossing two eigenvalues. We show the existence of at least four nontrivial periodic solutions for the parabolic boundary value problem. We restrict ourselves to the real Hilbert space and obtain this result by the geometry of the mapping.

  • PDF

THE CONSTRUCTION OF A NON-UNIMODAL GORENSTEIN SEQUENCE

  • Ahn, Jea-Man
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.443-450
    • /
    • 2011
  • In this paper, we construct a Gorenstein Artinian algebra R/J with non-unimodal Hilbert function h = (1, 13, 12, 13, 1) to investigate the algebraic structure of the ideal J in a polynomial ring R. For this purpose, we use a software system Macaulay 2, which is devoted to supporting research in algebraic geometry and commutative algebra.

힐베르트의 세 번째 문제

  • 한인기
    • Journal for History of Mathematics
    • /
    • v.12 no.2
    • /
    • pp.25-39
    • /
    • 1999
  • In Euclidean plane geometry, areas of polygons can be computed through a finite process of cutting and pasting. The Hilbert's third problem is that a theory of volume can not be based on the idea of cutting and pasting. This problem was solved by Dehn a few months after it was posed. The purpose of this article is not only to study Hilbert's third Problem and its proof but also to provide basis for the secondary school mathematics.

  • PDF

Parameter Estimation for a Hilbert Space-valued Stochastic Differential Equation ?$\pm$

  • Kim, Yoon-Tae;Park, Hyun-Suk
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.3
    • /
    • pp.329-342
    • /
    • 2002
  • We deal with asymptotic properties of Maximum Likelihood Estimator(MLE) for the parameters appearing in a Hilbert space-valued Stochastic Differential Equation(SDE) and a Stochastic Partial Differential Equation(SPDE). In paractice, the available data are only the finite dimensional projections to the solution of the equation. Using these data we obtain MLE and consider the asymptotic properties as the dimension of projections increases. In particular we explore a relationship between the conditions for the solution and asymptotic properties of MLE.