• Title/Summary/Keyword: Hilbert Curve Fractal Structure

Search Result 4, Processing Time 0.023 seconds

Design and Fabrication of the GPS Receiving Antenna using Hilbert Curve Fractal Structure (힐버트 커브 프랙탈 구조를 이용한 GPS 수신 안테나 설계 및 제작)

  • Kang, Sang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.125-129
    • /
    • 2014
  • In this paper, design and fabrication of the GPS receiving antenna using Hilbert curve fractal structure was proposed. The size of the antenna was miniaturized by transforming dipole structure into monopole structure because its size increases if Hilbert curve fractal dipole structure is used. To use a Hilbert curve structure, the current directions of the radiator were made oppositely each other. The size of the antenna is $10{\times}10{\times}0.8[mm]$, the line width is 0.25[mm]. The resonant frequency is 1.58[GHz] and its range is 1.52[GHz] ~ 1.65[GHz]. Frequency bandwidth is 130[MHz]. Antenna maximum gain is 3.09[dBi].

RFID Reader Antenna with Hilbert Curve Fractal Structure over Partially Grounded Plane (Hilbert 커브 프랙탈 구조를 이용한 부분 접지된 RFID 리더 안테나)

  • Lim, Jung-Hyun;Kang, Bong-Soo;Jwa, Jeong-Woo;Kim, Heung-Soo;Yang, Doo-Yeong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.30-38
    • /
    • 2007
  • In this paper, UHF band RFID reader antenna using filbert curve fractal structure and adding the partially grounded plane at the bottom of antenna, which has a resonant frequency at 910MHz, is proposed. Input impedance of antenna is matched with the feed line of 50ohm by varying the length and width of line segment making up the antenna, and by moving the position of via hole. The gain and directivity of antenna is enhanced as varying the dimension of the partially grounded plane and adding the line segment. The size of fabricated antenna is $68mm\times68mm$. The impedance band width(VSWR<2) is $882\sim942MHz$. The return loss and the gain of fabricated antenna are -18.2dB, 5.3dBi at 910MHz.

A Study on Fractal Monopole Antenna with Hexagonal Symmetrical Pattern (육각형 대칭 패턴 프랙탈 모노폴 안테나에 대한 연구)

  • Chang, Tae-Soon;Kang, Sang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.121-126
    • /
    • 2022
  • This study is about an antenna implemented in the form of a monopole having a hexagonal symmetric pattern by simplifying the modified Hilbert curve fractal monopole structure. The modified Hilbert curve fractal monopole structure was simplified and miniaturized, and the radiator was implemented in a hexagonal symmetrical pattern to improve performance. The dielectric constant of substrate is 4.7, and the total line length with a meander-shaped symmetrical structure is 59 mm. The size of the antenna is 10 mm × 10 mm × 0.8 mm, and the line width is 0.4 mm. The size of the antenna measuring jig is 64 mm × 21 mm × 1 mm. The resonant frequency is 1.57 GHz, and the frequency range is 1.51 to 1.615 GHz. The frequency bandwidth is 105 MHz. As for the antenna gain, the measurement gain of the YZ-plane was 2.32 dBi, and that of the XZ-plane was -1.03 dBi. As a result, we confirmed that antenna miniaturization is possible using a hexagonal symmetric pattern fractal structure. In addition, we confirmed that the antenna performance can be easily improved by changing the structure of the radiator.

RFID Antenna using Fractal structure (프랙탈 구조를 이용한 RFID 안테나)

  • Kim, Ki-Chan;Ko, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1389-1390
    • /
    • 2008
  • In this paper, a This paper presents the Hilbert curve Fractal Antenna has properties of Self-similarity and Plane-Filling. In case of fractal antenna is very useful to be small and multiple resonant. The antenna has a resonant frequency of 910MHz and 2450MHz base on RFID(Radio Frequency IDentification). In particular, we designed tag antenna by the $4^{th}$ repeat. According to the repeated number of fractal structures, resonance frequency became looking downward. Theses presented Frequency, Such as 910MHz and 2450MHz, at $S_{11}$ is -31dB and -19dB, bandwidth 120MHz and 90MHz to VSWR 2:1.

  • PDF