• Title/Summary/Keyword: Highly oriented diamond film

Search Result 7, Processing Time 0.017 seconds

The Effect of Initial DC Bias Voltage on Highly Oriented Diamond Film Growth on Silicon

  • Dae Hwan Kang;Seok Hong Min;Ki Bum Kim
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.13-17
    • /
    • 1997
  • It is identified that the diamond films grown o bias-treated (100) silicon showed different surface morphologies and film textures according to the initial applied dc bias voltage at the same growth condition. The highly oriented diamond film (HODF) was successfully grown on -200 V bias-treated silicon substrate in which the heteroepitaxial relation of $(100)_{dimond}//(100)_{si}\; and\; [110]_{diamond}//[110]_{si}$ was identified. On the contrary, the heteroepitaxial relation was considerably disturbed in the samples bias-voltage was a key factor in growing the highly oriented diamond film on (100) silicon substrate. Considering the experimental results, we proposed a new model about heteroepitaxial diamond growth on silicon, in which 9 diamond unit cell are matched with 4 silicon cells and the bond covalency of both atoms is satisfied via the intermediate layer at the interface as well.

  • PDF

Three-dimensional TEM Characterization of Highly Oriented Diamond Films on a (100) Silicon Substrate

  • Seung Joon Jeon;Arun Kymar Chawla;Young Joon Baik;Changmo Sung
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.155-158
    • /
    • 1997
  • Highly oriented diamond films were deposited on a (100) silicon substrate by bias enhanced nucleation technique. Both plan-view and cross-section TEM were applied to study the nucleation and growth mechanism of diamond grains. Randomly oriented polycrystalline diamond grains with internal microtwins were observed at the nucleation stage while defect free regions were retained at the growth stage and were apparently related with the epitaxy of diamond films. From our experimental results, the nucleation and texture formation mechanism of diamond films is discussed.

  • PDF

Growth of Highly Oriented Diamond Films by Microwave Plasma Chemical Vapor Deposition (마이크로파 플라즈마 화학기상증착법에 의한 HOD 박막 성장)

  • 이광만;최치규
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.3
    • /
    • pp.45-50
    • /
    • 2004
  • Highly oriented diamond (HOD) films in polycrystalline can be grown on the (100) silicon substrate by microwave plasma CVD. Bias enhanced nucleation (BEN) method was adopted for highly oriented diamond deposition with high nucleation density and uniformity. The substrate was biased up to -250[Vdc] and bias time required for forming a diamond film was varied up to 25 minutes. Diamond was deposited by using $\textrm{CH}_4$/CO and $H_2$ mixture gases by microwave plasma CVD. Nucleation density and degree of orientation of the diamond films were studied by SEM. Thermal conductivity of the diamond films was ∼5.27[W/cm.K] measured by $3\omega$ method.

  • PDF

Highly Oriented Textured Diamond Film on Si Substrate (Si 기판과 일정방향관계를 갖는 근사단결정 다이아몬드 박막 합성)

  • 백영준;은광용
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.457-463
    • /
    • 1994
  • The growth condition of highly oriented textured diamond film on a (100) Si substrate was investigated as a function of texture orientation. The growth process consisted of biased enhanced nucleation (BEN) and texture growth. The substrate was under the plasma of 6% CH4-94% H2 with negative bias of 200V during the BEN which grounded during the texture growth. The texture orintation changed from <100> to <110> by increasing substrate temperature. The nearly perfect match between textured diamond grains and the Si substrate could be obtained under the condition of <100> texture. The degree of tilt mismatch increased with the increase of deviation of texture orientation from <100>. The degree of twist mismatch appeared to increase abruptly beyond the critical deviation of texture orientation from <100> because the nuclei having the same orientation as the substrate were no more preferred grains for texture formation.

  • PDF

Highly Oriented Textured Diamond Films on Si Substrate though 2-step Growth Method (2단계 성장법을 통한 근사단결정의 다이아몬드 박막 합성)

  • Kim, Do-Geun;Seong, Tae-Yeon;Baek, Yeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1049-1054
    • /
    • 1999
  • Two-step growth method is suggested to enhance the alignment of highly oriented diamond films. (100) Si wafers are pretreated with negative biasing of - 200 V at $850^{\circ}C$ for 20 min with 4 % methane in hydrogen plasma. The pretreated wafers are grown under the lst-step growth conditions(2 % CH$_4$ in H$_2$, $810^{\circ}C$) from 2 hr to 35 hr, in order to obtain <100> textured films. The 2nd-step growth(2 % CH$_4$ in H$_2$, $850^{\circ}C$) is carried out to make diamond films having (100) growth planes, which are parallel to the substrate. The alignment of the films after the 1st-step growth, has been analyzed by {111} X-ray pole figure, which is improved abruptly with increasing film thickness. However, the pyramidal surface morphology is inevitable. These morphology is flattened after the 2nd-step growth by developing the (100) facets parallel to the substrate. The alignment of the highly oriented textured films after the two-step growth depends on the thickness of the 1st-step growth film.

  • PDF

Micro/Nanotribology and Its Applications

  • Bhushan, Bharat
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.128-135
    • /
    • 1995
  • Atomic force microscopy/friction force microscopy (AFM/FFM) techniques are increasingly used for tribological studies of engineering surfaces at scales, ranging from atomic and molecular to microscales. These techniques have been used to study surface roughness, adhesion, friction, scratching/wear, indentation, detection of material transfer, and boundary lubrication and for nanofabrication/nanomachining purposes. Micro/nanotribological studies of single-crystal silicon, natural diamond, magnetic media (magnetic tapes and disks) and magnetic heads have been conducted. Commonly measured roughness parameters are found to be scale dependent, requiring the need of scale-independent fractal parameters to characterize surface roughness. Measurements of atomic-scale friction of a freshly-cleaved highly-oriented pyrolytic graphite exhibited the same periodicity as that of corresponding topography. However, the peaks in friction and those in corresponding topography were displaced relative to each other. Variations in atomic-scale friction and the observed displacement has been explained by the variations in interatomic forces in the normal and lateral directions. Local variation in microscale friction is found to correspond to the local slope suggesting that a ratchet mechanism is responsible for this variation. Directionality in the friction is observed on both micro- and macro scales which results from the surface preparation and anisotropy in surface roughness. Microscale friction is generally found to be smaller than the macrofriction as there is less ploughing contribution in microscale measurements. Microscale friction is load dependent and friction values increase with an increase in the normal load approaching to the macrofriction at contact stresses higher than the hardness of the softer material. Wear rate for single-crystal silicon is approximately constant for various loads and test durations. However, for magnetic disks with a multilayered thin-film structure, the wear of the diamond like carbon overcoat is catastrophic. Breakdown of thin films can be detected with AFM. Evolution of the wear has also been studied using AFM. Wear is found to be initiated at nono scratches. AFM has been modified to obtain load-displacement curves and for nanoindentation hardness measurements with depth of indentation as low as 1 mm. Scratching and indentation on nanoscales are the powerful ways to screen for adhesion and resistance to deformation of ultrathin fdms. Detection of material transfer on a nanoscale is possible with AFM. Boundary lubrication studies and measurement of lubricant-film thichness with a lateral resolution on a nanoscale have been conducted using AFM. Self-assembled monolyers and chemically-bonded lubricant films with a mobile fraction are superior in wear resistance. Finally, AFM has also shown to be useful for nanofabrication/nanomachining. Friction and wear on micro-and nanoscales have been found to be generally smaller compared to that at macroscales. Therefore, micro/nanotribological studies may help def'me the regimes for ultra-low friction and near zero wear.