• Title/Summary/Keyword: Highly accelerated stress testing

Search Result 5, Processing Time 0.017 seconds

Necessity of step-stress accelerated life testing experiment at higher steps

  • Chandra, N.;Khan, Mashroor Ahmad;Pandey, M.
    • International Journal of Reliability and Applications
    • /
    • v.15 no.2
    • /
    • pp.85-98
    • /
    • 2014
  • Accelerated life testing (ALT) is a well famous technique in life testing and reliability studies, this is particularly used to induce so high stress leading to failure of the highly reliable units quickly under stipulated duration of time. The step-stress ALT is one of the systematic experimental strategy of ALT applied to fail the units in steps. In this article we focus on two important issues (i) necessity of life tests at higher steps with relevant causes (ii) to develop a new optimum test plan for 3-step SSALT under the modified cumulative exposure model proposed by Khamis and Higgins (1998). It is assumed that the lifetime of test units follows Rayleigh distribution and its scale parameter at constant stress level is assumed to be a log-linear function of the stress. The maximum likelihood estimates of the parameters involved in the step-stress ALT model are obtained. A simulation study is performed for numerical investigation of the proposed new optimum plan 3-step, step-stress ALT. The necessity of the life test units at 3-step step-stress is also numerically examined in comparison to simple step-stress setup.

  • PDF

Research Results and Trends Analysis on Accelerated Testing for Ensuring High Reliability (고 신뢰성 확보를 위한 가속시험의 연구동향 분석)

  • Kim, Jong-Gurl;Song, Jung-Moo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.419-432
    • /
    • 2011
  • 제품의 신뢰성에 대한 소비자의 인식이 높아짐에 따라 기업에서는 높은 품질과 신뢰성 있는 제품을 만들기 위해 많은 노력을 하고 있다. 신뢰성은 기기, 부품, 재료 등 시스템이 규정된 조건하에서, 의도하는 기간 동안 규정된 기능을 고장 없이 수행할 수 있는 성질로 규정된다. 높은 신뢰성의 확보를 위한 제품의 신뢰성 시험은 많은 시간과 비용이 소모되기 때문에 현대의 빠른 시장 흐름에 따라가지 못한다. 특히, 최근 기술발전 속도가 빨라지고 제품 수명주기(Life Cycle)와 개발 기간이 짧아지고 있는 추세에 있으므로 이에 대응할 수 있는 신속한 시험방법의 실시가 반드시 필요한 시점이다. 위와 같은 신뢰성을 갖는 제품의 시험의 한계를 극복하고 시험시간을 단축하기 위한 여러 가지 방법이 연구되어 왔고, 그 중 가속 시험(Accelerated Test)에 대한 필요성과 요구가 계속 증가하고 있는 추세다. 본 연구에서는 단순부품과 재료의 신뢰도 정보를 신속하게 얻는데 매우 유용한 신뢰성 시험방법 중에 하나인 가속시험의 연구동향과 적용 현황을 분석하고 이의 효과적인 적용과 활용방안을 모색 하고자 한다.

  • PDF

Oxidation and Repeated-Bending Properties of Sn-Based Solder Joints After Highly Accelerated Stress Testing (HAST)

  • Kim, Jeonga;Park, Cheolho;Cho, Kyung-Mox;Hong, Wonsik;Bang, Jung-Hwan;Ko, Yong-Ho;Kang, Namhyun
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.678-688
    • /
    • 2018
  • The repeated-bending properties of Sn-0.7Cu, Sn-0.3Ag-0.7Cu (SAC0307), and Sn-3.0Ag-0.5Cu (SAC305) solders mounted on flexible substrates were studied using highly accelerated stress testing (HAST), followed by repeated-bending testing. In the Sn-0.7Cu joints, the $Cu_6Sn_5$ intermetallic compound (IMC) coarsened as the HAST time increased. For the SAC0307 and SAC305 joints, the $Ag_3Sn$ and $Cu_6Sn_5$ IMCs coarsened mainly along the grain boundary as the HAST time increased. The Sn-0.7Cu solder had a high contact angle, compared to the SAC0307 and SAC305 solders; consequently, the SAC0307 and SAC305 solder joints displayed smoother fillet shapes than the Sn-0.7Cu solder joint. The repeated-bending for the Sn-0.7Cu solder produced the crack initiated from the interface between the Cu lead wire and the solder, and that for the SAC solders indicated the cracks initiated at the surface, but away from the interface between the Cu lead wire and the solder. Furthermore, the oxide layer was thickest for Sn-0.7Cu and thinnest for SAC305, regardless of the HAST time. For the SAC solders, the crack initiation rate increased as the oxide layer thickened and roughened. $Cu_6Sn_5$ precipitated and grew along the grain and subgrain boundaries as the HAST time increased, embrittling the grain boundary at the crack propagation site.

Compound Linear Test Plan for 3-level Constant Stress Tests

  • Kim, In-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.945-952
    • /
    • 2006
  • Several accelerated life test plans use tests at only two levels of stress and thus, have practical limitations. They highly depend upon the assumption of a linear relationship between stress and time-to-failure and use only two extreme stresses that can cause irrelevant failure modes. Thus 3-level stress plans are preferable. When the lifetime distribution of test unit is exponential with mean lifetime $\theta_i$ at stress $x_i$, i=0, 1, 2, 3, we derive the optimum quadratic plan under the assumption that a quadratic relationship exists between stress and log(mean lifetime), and propose the compound linear plans, as an alternative to the optimum quadratic plan. The proposed compound linear plan is better than two other compromise plans for constant stress testing and nearly as good as the optimum quadratic plan, and has the advantage of simplicity.

  • PDF

Assessment of flow-accelerated corrosion-induced wall thinning in SA106 pipes with elbow sections

  • Seongin Moon;Jong Yeon Lee;Kyung-Mo Kim;Soon-Woo Han;Gyeong-Geun Lee;Wan-Young Maeng;Sebeom Oh;Dong-Jin Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1244-1249
    • /
    • 2024
  • A combination of flow-accelerated corrosion (FAC) tests and corresponding computational fluid dynamics (CFD) tests were performed to determine the hydrodynamic parameters that could help predict the highly susceptible location to FAC in the elbow section. The accelerated FAC tests were performed on a specimen containing elbow sections fabricated using commercial 2-inch carbon steel pipe. The tests were conducted at flow rates of 9 m/s under the following conditions: water temperature of 150 ℃, dissolved oxygen <5 ppb, and pH 7. Thickness reduction of the specimen pipe due to FAC was measured using ultrasonic testing. CFD was conducted on the FAC test specimen, and the turbulence intensity, and shear stress were analyzed. Notably, the location of the maximum hydrodynamic parameters, that is, the wall shear stress and turbulent intensity, is also the same location with maximum FAC rate. Therefore, the shear stress and turbulence intensity can be used as hydrodynamic parameters that help predict the FAC-induced wall-thinning rate. The results provide a method to identify locations susceptible to FAC and can be useful for determining inspection priority in piping systems.