• 제목/요약/키워드: Higher Order

검색결과 17,932건 처리시간 0.043초

Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models

  • Varello, Alberto;Carrera, Erasmo
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.659-683
    • /
    • 2014
  • The static analysis of structures with arbitrary cross-section geometry and material lamination via a refined one-dimensional (1D) approach is presented in this paper. Higher-order 1D models with a variable order of expansion for the displacement field are developed on the basis of Carrera Unified Formulation (CUF). Classical Euler-Bernoulli and Timoshenko beam theories are obtained as particular cases of the first-order model. Numerical results of displacement, strain and stress are provided by using the finite element method (FEM) along the longitudinal direction for different configurations in excellent agreement with three-dimensional (3D) finite element solutions. In particular, a layered thin-walled cylinder is considered as first assessment with a laminated conventional cross-section. An atherosclerotic plaque is introduced as a typical structure with arbitrary cross-section geometry and studied for both the homogeneous and nonhomogeneous material cases through the 1D variable kinematic models. The analyses highlight limitations of classical beam theories and the importance of higher-order terms in accurately detecting in-plane cross-section deformation without introducing additional numerical problems. Comparisons with 3D finite element solutions prove that 1D CUF provides remarkable three-dimensional accuracy in the analysis of even short and nonhomogeneous structures with arbitrary geometry through a significant reduction in computational cost.

Optimum design of steel framed structures including determination of the best position of columns

  • Torkzadeh, P.;Salajegheh, J.;Salajegheh, E.
    • Steel and Composite Structures
    • /
    • 제8권5호
    • /
    • pp.343-359
    • /
    • 2008
  • In the present study, an efficient method for the optimum design of three-dimensional (3D) steel framed structures is proposed. In this method, in addition to choosing the best position of columns based on architectural requirements, the optimum cross-sectional dimensions of elements are determined. The preliminary design variables are considered as the number of columns in structural plan, which are determined by a direct optimization method suitable for discrete variables, without requiring the evaluation of derivatives. After forming the geometry of structure, the main variables of the cross-sectional dimensions are evaluated, which satisfy the design constraints and also achieve the least-weight of the structure. To reduce the number of finite element analyses and the overall computational time, a new third order approximate function is introduced which employs only the diagonal elements of the higher order derivatives matrices. This function produces a high quality approximation and also, a robust optimization process. The main feature of the proposed techniques that the higher order derivatives are established by the first order exact derivatives. Several examples are solved and efficiency of the new approximation method and also, the proposed method for the best position of columns in 3D steel framed structures is discussed.

순환정상 프로세스의 고차 통계 특성을 이용한 디지털 변조인식 (Digitally Modulated Signal Classification based on Higher Order Statistics of Cyclostationary Process)

  • 안우현;나선필;서보석
    • 방송공학회논문지
    • /
    • 제19권2호
    • /
    • pp.195-204
    • /
    • 2014
  • 이 논문에서는 순환정상 프로세스의 고차 통계 특성을 바탕으로 2-FSK, 4-FSK, 8-FSK, MSK, BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, 64-QAM 등 10개의 기저대역 디지털 변조신호를 자동으로 인식하는 방법을 제안하였다. 변조신호의 고유한 성질을 나타내는 특징변수로는 1차 순환 모멘트와 고차 순환 큐뮬런트를 이용하였다. 제안한 변조인식기는 크게 두 단계로 구성되며, 첫 번째 단계에서는 1차 순환 모멘트가 나타내는 첨두치를 이용하여 M-FSK와 비FSK로 변조신호를 분류한다. 두 번째 단계에서는 비FSK를 분류하기 위해 고차 순환 큐뮬런트 값을 이용하는 Gaussian 혼합 모델 기반의 분류기를 적용하였다. 제안한 방법의 성능을 검증하기 위해서 모의실험을 실시하였다. 모의실험 결과 제안한 분류기는 주파수와 위상 옵셋이 존재하는 환경에서도 우수한 분류확률을 나타내었다.

Ductile fracture simulation using phase field approach under higher order regime

  • Nitin Khandelwal;Ramachandra A. Murthy
    • Structural Engineering and Mechanics
    • /
    • 제89권2호
    • /
    • pp.199-211
    • /
    • 2024
  • The loading capacity of engineering structures/components reduces after the initiation and propagation of crack eventually leads to the final failure. Hence, it becomes essential to deal with the crack and its effects at the design and simulation stages itself, by detecting the prone area of the fracture. The phase-field (PF) method has been accepted widely in simulating fracture problems in complex geometries. However, most of the PF methods are formulated with second order continuity theoryinvolving C0 continuity. In the present study, PF method based on fourth-order (i.e., higher order) theory, maintaining C1 continuity has been proposed for ductile fracture simulation. The formulation includes fourth-order derivative terms of phase field variable, varying between 0 and 1. Applications of fourth-order PF theory to ductile fracture simulation resulted in novelty in this area. The proposed formulation is numerically solved using a two-dimensional finite element (FE) framework in 3-layered manner system. The solutions thus obtained from the proposed fourth order theory for different benchmark problems portray the improvement in the accuracy of the numerical results and are well matched with experimental results available in the literature. These results are also compared with second-order PF theory and a comparison study demonstrated the robustness of the proposed model in capturing ductile behaviour close to experimental observations.

효율적 고차 신경회로망을 이용한 비선형 함수 근사에 대한 연구 (Nonlinear Function Approximation Using Efficient Higher-order Feedforward Neural Networks)

  • 신요안
    • 한국통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.251-268
    • /
    • 1996
  • In this paper, a higher-order feedforward neural network called ridge polynomial network (RPN) which shows good approximation capability for nonlnear continuous functions defined on compact subsets in multi-dimensional Euclidean spaces, is presented. This network provides more efficient and regular structure as compared to ordinary higher-order feedforward networks based on Gabor-Kolmogrov polynomial expansions, while maintating their fast learning property. the ridge polynomial network is a generalization of the pi-sigma network (PSN) and uses a specialform of ridge polynomials. It is shown that any multivariate polynomial can be exactly represented in this form, and thus realized by a RPN. The approximation capability of the RPNs for arbitrary continuous functions is shown by this representation theorem and the classical weierstrass polynomial approximation theorem. The RPN provides a natural mechanism for incremental function approximation based on learning algorithm of the PSN. Simulation results on several applications such as multivariate function approximation and pattern classification assert nonlinear approximation capability of the RPN.

  • PDF

A simple method of stiffness matrix formulation based on single element test

  • Mau, S.T.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.203-216
    • /
    • 1999
  • A previously proposed finite element formulation method is refined and modified to generate a new type of elements. The method is based on selecting a set of general solution modes for element formulation. The constant strain modes and higher order modes are selected and the formulation method is designed to ensure that the element will pass the basic single element test, which in turn ensures the passage of the basic patch test. If the element is to pass the higher order patch test also, the element stiffness matrix is in general asymmetric. The element stiffness matrix depends only on a nodal displacement matrix and a nodal force matrix. A symmetric stiffness matrix can be obtained by either modifying the nodal displacement matrix or the nodal force matrix. It is shown that both modifications lead to the same new element, which is demonstrated through numerical examples to be more robust than an assumed stress hybrid element in plane stress application. The method of formulation can also be used to arrive at the conforming displacement and hybrid stress formulations. The convergence of the latter two is explained from the point of view of the proposed method.

Higher order free vibration of sandwich curved beams with a functionally graded core

  • Fard, K. Malekzadeh
    • Structural Engineering and Mechanics
    • /
    • 제49권5호
    • /
    • pp.537-554
    • /
    • 2014
  • In this paper, free vibration of a sandwich curved beam with a functionally graded (FG) core was investigated. Closed-form formulations of two-dimensional (2D) refined higher order beam theory (RHOBT) without neglecting the amount of z/R was derived and used. The present RHOBT analysis incorporated a trapezoidal shape factor that arose due to the fact that stresses through the beam thickness were integrated over a curved surface. The solutions presented herein were compared with the available numerical and analytical solutions in the related literature and excellent agreement was obtained. Effects of some dimensionless parameters on the structural response were investigated to show their effects on fundamental natural frequency of the curved beam. In all the cases, variations of the material constant number were calculated and presented. Effect of changing ratio of core to beam thickness on the fundamental natural frequency depended on the amount of the material constant number.

Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory

  • Dehsaraji, M. Lori;Saidi, A.R.;Mohammadi, M.
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.259-269
    • /
    • 2020
  • In this paper, bending-stretching analysis of thick functionally graded piezoelectric rectangular plates is studied using the higher-order shear and normal deformable plate theory. On the basis of this theory, Legendre polynomials are used for approximating the components of displacement field. Also, the effects of both normal and shear deformations are encountered in the theory. The governing equations are derived using the principle of virtual work and variational approach. It is assumed that plate is made of piezoelectric materials with functionally graded distribution of material properties. Hence, exponential function is used to modify mechanical and electrical properties through the thickness of the plate. Finally, the effect of material properties, electrical boundary conditions and dimensions are investigated on the static response of plate. Also, it is shown that results of the presented model are close to the three dimensional elasticity solutions.

비선형 진동절연 시스템의 근사적 응답을 구하는 방법 (Methods to Obtain Approximate Responses of a Non-Linear Vibration Isolation System)

  • 이건명
    • 한국기계가공학회지
    • /
    • 제19권6호
    • /
    • pp.23-28
    • /
    • 2020
  • A non-linear vibration isolation system composed of a non-linear spring and a linear damper was presented in a previous study. The advantage of the proposed isolator is the simple structure of the system. When the base of the isolator is harmonically excited, the response component of the mass at the excitation frequency was approximated using three different methods: linear approximation, harmonic balance, and higher-order frequency response functions (FRFs). The method using higher-order FRFs produces significantly more accurate results compared with the other methods. The error between the exact and approximate responses does not increase monotonously with the excitation amplitude and is less than 2%.

The Estimation of the Depth of Anesthetic Using Higher-Order Spectrum Analysis of EEG Signals

  • Park, Jong-Duk;Ye, Soo-Young;Jeon, Gye-Rok;Huh, Young
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.287-293
    • /
    • 2007
  • The researchers have studied for a long time about the depth of anesthesia but they don't make criteria for the depth of anesthesia. Anesthetists can't make a prediction about patient's reaction. Therefore, patients have potential risk such as poisonous side effect, late-awake, early-awake and strain reaction. In this study, the distributed characteristics on the bispectrum and bicoherence, the type of nonlinear signal processing, as a result of the coupling of EEG were presented according to depth of anesthesia. These results were consistent with a trend of delta ratio that the index of evaluation for the depth of anesthesia. The higher-order spectrum (HOS), the bispectrum and bicoherence, gives the useful information about depth of anaesthesia than other indexes.