• Title/Summary/Keyword: Higher Concentration

Search Result 14,121, Processing Time 0.037 seconds

Improvement of Growth and Benzo[c]phenanthridine Alkaloids Production by Modifying Nitrogen Source in Suspension Cell Culture of Eschscholtzia californica (Eschscholtzia californica의 현탁 세포배양에서 질소원 조절에 의한 세포 성장 및 Benzo[c]phenanthridine Alkaloids 생산량 향상)

  • Lee, Song-Eun;Rhee, Hong-Soon;Son, Seok-Young;Park, Jong-Moon
    • KSBB Journal
    • /
    • v.24 no.2
    • /
    • pp.195-200
    • /
    • 2009
  • The effect of nitrogen source on cell growth and benzo[c]phenanthridine alkaloids production by modifying $NO_3\;^-:NH_4\;^+$ ratio in cell suspension culture of Eschscholtzia califarnica was investigated. When total nitrogen concentration is maintained (60 mM), maximum benzo[c]phenanthridine alkaloids production is about 60.72 mg/L at 50:10 (mol/mol). This productivity was 3.8 times higher than that obtained when cells were grown instandard MS medium. The decrease of $NO_3\;^-:NH_4\;^+$ ratio at 60 mM of total nitrogen caused the decline of both growth and benzo[c]phenanthridine alkaloids production. Under the same concentration of $N0_3\;^-$ (50 mM), higher concentration of $NH_4\;^+$ inhibited cell growth strongly but induced alkaloids production slightly. Also, under the same concentration of $NH_4\;^+$ (25 mM), higher concentration of $N0_3\;^-$ induced alkaloids production strongly but high concentration of $N0_3\;^-$ (${\geq}$100 mM) interfered alkaloids instead. Maximum benzo[c]phenanthridine alkaloids production is about 62.71 mg/L at 50:25 (mol/mol). These results suggest that higher biomass and higher alkaloids production could be obtained by optimizing each nitrogen concentration as well as $NO_3\;^-:NH_4\;^+$ ratio in the culture medium. Nitrate and ammonium in culture medium have distinct role in the regulation of growth and alkaloids production; ammonium had a strong influence on growth while nitrate had an influence on alkaloids production.

Degradation Pattern and Rate of Some Pesticides in Soils -Part I. Degradation Pattern and Rate of Parathion in Soils- (토양처리(土壤處理) 농약제(農藥劑)의 분해율(分解率)에 관한 연구(硏究) -제1보(第一報). Parathion의 토양중(土壤中) 분해(分解)에 대하여-)

  • Lim, Sun-Uk;Kang, Kyu-Yung;Choi, Yong-Lak
    • Applied Biological Chemistry
    • /
    • v.26 no.4
    • /
    • pp.239-247
    • /
    • 1983
  • The effects of some soil conditions on the degradation rate and decomposing pattern of parathion were investigated and the obtained results are summarized as follows: Parathion degraded more rapidly in flooded soils than in non-flooded, in wet soils than in dry soils under non-flooded soils. The degradation rates in paddy and upland soils increased at high temperature than low temperature, higher pesticide concentration than low concentration and higher soil pH level. Parathion in paddy and upland soils was more persistent under soil sterilization than under non-sterilization and degraded rapidly in glucose application. Parathion was more persistent in upland soils than paddy soils under several factors described above. The metabolites identified from the paddy and upland soils by TLC include para-oxon (Rf 0.5), aminoparathion(Rf 0.27), p-nitrophenol(Rf 0.2), p-aminophenol(Rf 0.15). Soil enzyme, acid phosphatase activities decreased more at flooded soils than non-flooded, higher pesticide concentration than low concentration and higher soil pH level and the activity in glucose application was increased. Soil enzymes, urease and dehydrogenase activity decreased more at higher pesticide concentration than low concentration. Comparing with soil enzyme activity in paddy and upland soil, the former was higher than the latter.

  • PDF

A Study on Factors Affecting Airborne Fume Composition and Concentration in Welding Process (용접공정에서 발생된 공기중 흄의 조성과 농도에 영향을 미치는 요인에 관한 연구)

  • Shin, Yong Chul;Yi, Gwang Yong;Park, Seung Hyun;Lee, Na Roo;Jeong, Jee Yeon;Park, Jung Keun;Oh, Se Min;Moon, Young Hahn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.2
    • /
    • pp.181-195
    • /
    • 1997
  • The purpose of this study was to investigate factors affecting the composition and concentrations of fumes generated from various types of welding processes. The results are as follows. 1. Iron(Fe), zinc(Zn) and manganese(Mn) were predominant in Welding fumes. The Fe content in total fumes was 25.5% in coated electrode and 28.2% in $CO_2$ are welding, and the Zn content was 4.5% and 9.1%, respectively, and the Mn was 3.6% and 7.8%, respectively. 2. It was found that the important factors determining composition and concentration of fumes were type of industries, type of welding processes, type and composition of electrodes, composition of base metals, confinement of workplaces or condition of ventilation, work intensity, coated metals such as lead and Zn in paint. 3. The Mn content in airborne fumes was highly correlated with that of electrode(r=0.77, p<0.01) and was about 4 times higher than that in electrodes or base metals. The results lindicate that Mn is well evaporated into air during welding. The higher vapor pressure of Mn may explain this phenomenon. 4. the airborne total fume concentrations were significantly different among types of industries(p<0.001). The airborne total fume concentration was higher in order of sleel-structure manufacturing($GM=15.1mg/m^3$), shipbuilding($GM=13.2mg/m^3$), automobile-component manufacturing ($GM=7.8mg/m^3$) and automobile assembling industry($GM=3.0mg/m^3$) 5. The airbone total fume concentration was 6 times higher in $CO_2$ welding than in coated electrode welding, and approximately 3 times higher in confined area than in open area, in steel-structure manufacturing industry. 6. The concentration of welding fume outside welding helmet was about 2 times higher than that inside it. It is recommened that air sampling be done inside helmet to evaulate worker's exposure accurately, for it has an outstanding effect on reducing worker exposure to fumes and other contaminants.

  • PDF

Polyunsaturated/saturated Fatty Acid Ratios and Antioxidant Supplementation under the Control of Dietary Peroxidizability Index Value: Impact on Serum Lipid Profiles in Young and Adult Rats

  • Kang, Min Jeong;Lee, Eun Kyung;Lee, Sang Sun
    • Nutritional Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-15
    • /
    • 2005
  • An increase in serum cholesterol is directly associated with high incidences of cardiovascular diseases (CVD) and atherosclerosis. Serum lipid profiles are highly dependent on dietary fatty acids and age. The purpose of this study was to examine the age-related effects of polyunsaturated/saturated fatty acid ratios and antioxidant supplementation under the control of the dietary peroxidizability index (PI) value on serum lipid profiles in rats. While the PI level of dietary fatty acids was controlled at 81.22, the P/S ratios of fatty acids were 0.38 and 4.81 (LP and HP). The diets were supplemented with a vitamin E 1000 mg/kg diet and a selenium 2.5 mg/kg diet (LPS and HPS). Female Sprague-Dawley rats ages 3 weeks (young) and 16 weeks (adult) were fed four different experimental diets for 4 weeks. The serum triglyceride concentration of LPS was significantly higher in young rats than in adult rats. The total-cholesterol concentration of LP and HPS were higher in young rats than in adult rats. The high-density lipoprotein-cholesterol (HDL-C) concentration of LP, LPS and HP was higher in adult rats than in young rats. The low-density lipoprotein-cholesterol (LDL-C) concentration was higher in young rats than in adult rats. T-C/HDL-C and LDL-C/HDL-C ratios were much higher in young rats than in adult rats. In conclusion, P/S ratios and antioxidant supplementation did not affect T-C/HDL-C and LDL-C/HDL-C ratios as risk factors of CVD in adult rats when we controlled the PI value in the diet Probably, the invisible and confounding effects of dietary PI value implicate the beneficial roles of dietary P/S ratios and antioxidants in CVD. Accordingly, controlling the dietary PI value may be advantageous to lower the risk of CVD in adult rats.

Relationships of Obesity in Childhood to Plasma Lipids, Blood Pressure and Blood Glucose (아동기 비만이 혈장 지질, 혈압 및 혈당에 미치는 영향)

  • 임현숙;이종임
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.6
    • /
    • pp.724-733
    • /
    • 1993
  • In order to investigate the relationships of obesity in childhood to plasma lipid, blood pressure and blood glucose concentration, we selected 21 subjects for the moderate obese group(MO), 9 for mild obese group(MI), and 19 for the control group(C) among children aged 10~12. While the level of plasma triglyceride and VLDL-cholesterol of the MO group was much higher than that of group C, a significantly lower percentage of HDL-cholesterol was found in the MO compared to the percentage found in group C. Also the level of the total cholesterol and LDL-cholesterol of the MI group as well as the MO was much higher than that of C. The elevated total-cholesterol level of the Mi group was due to increased LDL-cholesterol and that of the MO was due to increases in both VLDL-cholesterol and LDL-cholesterol. As the result of these differences, the atherogenic index of the MO was significantly higher than that of C. The incidence of hypercholesterolemia( 200mg/dl) of the MI and MO was 60.0% and 77.8% respectively, All of the physical parameters and indexes except height were positively correlated with plasma lipid levels, systolic blood pressure, and blood glucose concentration. The analyses of the correlated with plasma lipid levels, systolic blood pressure, and blood glucose concentration. The analyses of the correlation indicated that central fat to peripheral fat ratio and waist to thigh girth ratio seemed to be closely associated to plasma lipid levels and atherogenic index. The MO had significantly higher systolic blood pressure than C and significantly higher blood glucose concentration was found in both MI and MO than in C. These results confirmed that obesity in childhood may be relevant to chronic metabolic diseases such as abnormal lipid metabolism, atherosclerosis, high blood pressure and diabetes mellitus.

  • PDF

Optimization of Ethanol Extraction Conditions from Propolis (a Bee Product) Using Response Surface Methodology (반응표면분석법을 이용한 프로폴리스의 에탄올 추출조건 최적화)

  • Kim, Seong-Ho;Kim, In-Ho;Kang, Bok-Hee;Lee, Kyung-Hee;Lee, Sang-Han;Lee, Dong-Sun;Cho, So-Mi K.;Hur, Sang-Sun;Kwon, Taeg-Kyu;Lee, Jin-Man
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.908-914
    • /
    • 2009
  • A central composite design was used to optimize extraction of propolis materials using ethanol. The independent variables in extraction experiments were ethanol concentration (50, 60, 70, 80, 90%, v/v) and extraction time (1, 2, 3, 4, and 5 h). Higher ethanol concentration and shorter extraction time increased total polyphenol content, but total polyphenol concentration began to decrease when ethanol concentration was higher than 80% (v/v). Ethanol concentration was more important than extraction time in optimization of total polyphenol content in propolis extracts. Electron-donating ability increased with ethanol concentration and shorter extraction time, with ethanol concentration being of greater significance. Antioxidant ability in extracts was optimal at an ethanol concentration of 65 - 75% and with an extraction time of 2.2 - 3.6 h. Nitrite-scavenging ability was increased with use of higher ethanol concentration and shorter extraction time. Total flavonoid content was maximized with an ethanol concentration of 68 - 82% and an extraction time of 2.4 - 3.7 h. Total flavonoid content was affected by both ethanol concentration and extraction time. By superimposition of contour plots, an ethanol concentration of 72 - 82% and an extraction time of 2.2 - 3.3 h were optimal for preparation of propolis extracts.

Growth and Yield of Forage Rice Cultivar 'Yeongwoo' according to Nitrogen Application Amount in Reclaimed Paddy Field

  • Eun-Ji Song;Sun-Woong Yun;Ji-Hyeon Mun;In-Ha Lee;Su-Hwan Lee;Nam-Jin Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.326-334
    • /
    • 2022
  • This study was carried out to investigate the optimal nitrogen concentration level suitable for forage rice growth by hydroponic cultivation in the salinity concentration of 0.1~0.3% which is similar to that of Muan reclaimed paddy field, and based on this results, to estimate optimal nitrogen fertilization level by field experiment in Muan reclaimed paddy for maximum forage production by cultivation of Yeongwoo rice. As a result of the growth response to the salt and nitrogen concentrations in the hydroponic cultivation experiment, the growth amount increased as the nitrogen concentration increased in the range of 0~24 me/L in the absence of salt stress. However, at a salt concentration of 0.1~0.3%, the growth amount was the highest at a nitrogen concentration of 12 me/L, and at higher nitrogen concentrations of that, the rice growth decreased as the nitrogen concentration increased. Therefore, nitrogen concentration of 12 me/L was judged to be an appropriate concentration for forage rice growth at salt concentration of 0.1~0.3%, and a nitrogen fertilization amount level corresponding to a nitrogen concentration of 12 me/L was actually applied to the Muan reclaimed paddy field for forage rice cultivation during two years. The amount of nitrogen fertilizer was tested with three treatments, which are 18 kg/10a considered appropriate, and 1.5 times and 2 times of the appropriate amount, and the planting density was tested with 2 treatments of 15 hills/m2 and 26 hills/m2. As a result of the reclaimed paddy field experiment, the yield was the highest when nitrogen fertilizer was applied at 18 kg/10a in the planting density of both treatments. Looking at the yield according to planting density, the high planting density plot yielded higher than the low planting density plot. In other words, when the planting density was 26 hills/m2 and the nitrogen fertilization amount was 18 kg/10, the highest dry matter yield of 1,763 kg/10a was obtained. From the results of hydroponics and reclaimed field experiments, we could conclude that the productivity of forage rice decreased more as the nitrogen concentration increased when the nitrogen concentration was higher than the optimal level under salt stress.

Gel Color and Texture of Surimi-like Pork from Muscles at Different Rigor States Post-mortem

  • Kang, Geun-Ho;Yang, Han-Sul;Jeong, Jin-Yeon;Moon, Sang-Hoon;Hur, Sun-Jin;Park, Gu-Boo;Joo, Seon-Tea
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1127-1134
    • /
    • 2007
  • Gels were made from surimi-like pork (SLP) made from muscles obtained at 1, 24 and 72 h post-mortem. The SLP from pre-rigor muscle had higher pH and moisture percentage compared to in- or post-rigor muscles. Also, SLP from pre-rigor muscle showed higher concentration of water-soluble protein that was washed out during the process. Gel from post-rigor muscle exhibited higher a* and b* value, and also resulted in higher Chroma and lower hue values. The dark color of gel from post-rigor muscle was related to higher concentration of sarcoplasmic protein in SLP and denser structure in the gel matrix. SDS-PAGE showed higher intensity of the phosphorylase in the sarcoplasmic protein fraction from pre-rigor muscle. Gel from post-rigor muscle showed higher hardness and sensory firmness, and the greater firmness was related to higher concentration of protein in SLP, and a compact network with smaller pockets in the gel matrix.

Characteristics of Surface High Ozone Concentration on Pusan Coastal area, Korea (부산 해안지역의 고농도 오존 발생 특성에 관한 연구)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.295-302
    • /
    • 2000
  • This study was conducted to investigate the characteristics of surface ozone concentration and occurrence of high ozone concentration using hourly ozone, nitrogen dioxide and meteorological data for 1997~1998 in Pusan coastal area. Monthly mean ozone concentration was the highest at Dongsamdong in Spring(35.4ppb), at Kwangbokdong in Fall(25.1ppb) and the lowest Dongsamdong(22.2ppb) and Kwangbokdong(16.0ppb) in Winter. Relative standard deviation indicating clearness of observation site was 0.42 at Dongsamdong and 0.49 at Kwangbokdong that is similar to urban area. The diurnal variation of ozone concentration of Dongsamdong and Kwangbokdong showed maximum at 1500~1600LST and minimum 0700~0800LST that typical pattern of ozone concentration. In ozone episode period(Sept. 10~15, 1998), diurnal change of ozone concentration was very high, and ozone concentration was related to meteorological parameters such as temperature, relative humidity, wind speed, cloud amount and radiation on a horizontal surface. During the episode days peak ozone concentrations are much higher than the normal values, wind speeds are always lower, and solar radiation is high with the exception of the September episode.

  • PDF

Investigation of Aerosol Number Concentration at Gosan Site in Jeju, Korea

  • Kang, Chang-Hee;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.23-30
    • /
    • 2012
  • The aerosol number concentration have measured with an aerodynamic particle sizer spectrometer(APS) at Gosan site in Jeju, Korea, from March 2010 to March 2011. And then the atmospheric aerosol number concentration, the temporal variation and the size distribution of aerosol number concentration have been investigated. The aerosol number concentration varies significantly from 748 particles/$cm^3$ to zero particles/$cm^3$. The average number concentration in small size ranges are very higher than those in large size ranges. The number concentrations in the size range 0.25~0.28 ${\mu}m$, 0.40~0.45 ${\mu}m$ and 2.0~2.5 ${\mu}m$ are about 84 particles/$cm^3$, 2 particles/$cm^3$ and 0.4 particles/$cm^3$, respectively. The number concentrations in range of larger than 7.5 ${\mu}m$ are below 0.001 particles/$cm^3$. The seasonal variations in the number concentration for smaller particle(<1.0 ${\mu}m$) are not much, but the variations for larger particle are very evident. And strong amplitudes of diurnal variations of entire averaged aerosol number concentration are not observed. Size-fractioned aerosol number concentrations are dramatically decreased with increased particle size. The size-fractioned aerosol number concentrations in size range 0.8~4.0 ${\mu}m$ during nighttime are evidently higher than during daytime, but similar levels are appeared in other size range. The seasonal differences in the size-fractioned number concentrations for smaller size range(<0.7 ${\mu}m$) are not observed, however, the remarkable seasonal differences are observed for larger size than 0.7 ${\mu}m$.