• 제목/요약/키워드: High-yield process

검색결과 790건 처리시간 0.026초

A Study on the Monitoring of Reject Rate in High Yield Process

  • Nam, Ho-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권3호
    • /
    • pp.773-782
    • /
    • 2007
  • The statistical process control charts are very extensively used for monitoring of process mean, deviation, defect rate or reject rate. In this paper we consider a control chart to monitor the process reject rate in the high yield process, which is based on the observed cumulative probability of the number of items inspected until r defective items are observed. We first propose selection of the optimal value of r in the CPC-r charts, and also consider the usefulness of the chart in high yield process such as semiconductor or TFT-LCD manufacturing process.

  • PDF

A Synthetic Chart to Monitor The Defect Rate for High-Yield Processes

  • Kusukawa, Etsuko;Ohta, Hiroshi
    • Industrial Engineering and Management Systems
    • /
    • 제4권2호
    • /
    • pp.158-164
    • /
    • 2005
  • Kusukawa and Ohta presented the $CS_{CQ-r}$ chart to monitor the process defect $rate{\lambda}$ in high-yield processes that is derived from the count of defects. The $CS_{CQ-r}$ chart is more sensitive to $monitor{\lambda}$ than the CQ (Cumulative Quantity) chart proposed by Chan et al.. As a more superior chart in high-yield processes, we propose a Synthetic chart that is the integration of the CQ_-r chart and the $CS_{CQ-r}$chart. The quality characteristic of both charts is the number of units y required to observe r $({\geq}2)$ defects. It is assumed that this quantity is an Erlang random variable from the property that the quality characteristic of the CQ chart follows the exponential distribution. In use of the proposed Synthetic chart, the process is initially judged as either in-control or out-of-control by using the $CS_{CQ-r}$chart. If the process was not judged as in-control by the $CS_{CQ-r}$chart, the process is successively judged by using the $CQ_{-r}$chart to confirm the judgment of the $CS_{CQ-r}$chart. Through comparisons of ARL (Average Run Length), the proposed Synthetic chart is more superior to monitor the process defect rate in high-yield processes to the stand-alone $CS_{CQ-r}$ chart.

반도체 제조공정에서의 이상수율 검출 방법론 (A New Abnormal Yields Detection Methodology in the Semiconductor Manufacturing Process)

  • 이장희
    • Journal of Information Technology Applications and Management
    • /
    • 제15권1호
    • /
    • pp.243-260
    • /
    • 2008
  • To prevent low yields in the semiconductor industry is crucial to the success of that industry. However, to prevent low yields is difficult because of too many factors to affect yield variation and their complex relation in the semiconductor manufacturing process. This study presents a new efficient detection methodology for detecting abnormal yields including high and low yields, which can forecast the yield level of a production unit (namely a lot) based on yield-related feature variables' behaviors. In the methodology, we use C5.0 to identify the yield-related feature variables that are the combination of correlated process variables associated with yield, use SOM (Self-Organizing Map) neural networks to extract and classify significant patterns of past abnormal yield lots and finally use C5.0 to generate classification rules for detecting abnormal yield lot. We illustrate the effectiveness of our methodology using a semiconductor manufacturing company's field data.

  • PDF

신경망을 이용한 동적 수율 개선 모형 (Dynamic Yield Improvement Model Using Neural Networks)

  • 정현철;강창욱;강해운
    • 산업경영시스템학회지
    • /
    • 제32권2호
    • /
    • pp.132-139
    • /
    • 2009
  • Yield is a very important measure that can expresses simply for productivity and performance of company. So, yield is used widely in many industries nowadays. With the development of the information technology and online based real-time process monitoring technology, many industries operate the production lines that are developed into automation system. In these production lines, the product structures are very complexity and variety. So, there are many multi-variate processes that need to be monitored with many quality characteristics and associated process variables at the same time. These situations have made it possible to obtain super-large manufacturing process data sets. However, there are many difficulties with finding the cause of process variation or useful information in the high capacity database. In order to solve this problem, neural networks technique is a favorite technique that predicts the yield of process for process control. This paper uses a neural networks technique for improvement and maintenance of yield in manufacturing process. The purpose of this paper is to model the prediction of a sub process that has much effect to improve yields in total manufacturing process and the prediction of adjustment values of this sub process. These informations feedback into the process and the process is adjusted. Also, we show that the proposed model is useful to the manufacturing process through the case study.

A Study on the Fault Process and Equipment Analysis of Plastic Ball Grid Array Manufacturing Using Data-Mining Techniques

  • Sim, Hyun Sik
    • Journal of Information Processing Systems
    • /
    • 제16권6호
    • /
    • pp.1271-1280
    • /
    • 2020
  • The yield and quality of a micromanufacturing process are important management factors. In real-world situations, it is difficult to achieve a high yield from a manufacturing process because the products are produced through multiple nanoscale manufacturing processes. Therefore, it is necessary to identify the processes and equipment that lead to low yields. This paper proposes an analytical method to identify the processes and equipment that cause a defect in the plastic ball grid array (PBGA) during the manufacturing process using logistic regression and stepwise variable selection. The proposed method was tested with the lot trace records of a real work site. The records included the sequence of equipment that the lot had passed through and the number of faults of each type in the lot. We demonstrated that the test results reflect the real situation in a PBGA manufacturing process, and the major equipment parameters were then controlled to confirm the improvement in yield; the yield improved by approximately 20%.

SSVM(Stepwise-Support Vector Machine)을 이용한 반도체 수율 예측 (A Yields Prediction in the Semiconductor Manufacturing Process Using Stepwise Support Vector Machine)

  • 안대웅;고효헌;김지현;백준걸;김성식
    • 산업공학
    • /
    • 제22권3호
    • /
    • pp.252-262
    • /
    • 2009
  • It is crucial to prevent low yields in the semiconductor industry. Since many factors affect variation in yield and they are deeply related, preventing low yield is difficult. There have been substantial researches in the field of yield prediction. Many researchers had used the statistical methods. Many studies have shown that artificial neural network (ANN) achieved better performance than traditional statistical methods. However, despite ANN's superior performance some problems such as over-fitting and poor explanatory power arise. In order to overcome these limitations, a relatively new machine learning technique, support vector machine (SVM), is introduced to classify the yield. SVM is simple enough to be analyzed mathematically, and it leads to high performances in practical applications. This study presents a new efficient classification methodology, Stepwise-SVM (SSVM), for detecting high and low yields. SSVM is step-by-step adjustment of parameters to be precisely the classification for actual high and low yield lot. The objective of this paper is to examine the feasibility of SVM and SSVM in the yield classification. The experimental results show that SVM and SSVM provides a promising alternative to yield classification for the field data.

스마트제조시스템의 설비인자 분석 (Analysis of Equipment Factor for Smart Manufacturing System)

  • 안재준;심현식
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.168-173
    • /
    • 2022
  • As the function of a product is advanced and the process is refined, the yield in the fine manufacturing process becomes an important variable that determines the cost and quality of the product. Since a fine manufacturing process generally produces a product through many steps, it is difficult to find which process or equipment has a defect, and thus it is practically difficult to ensure a high yield. This paper presents the system architecture of how to build a smart manufacturing system to analyze the big data of the manufacturing plant, and the equipment factor analysis methodology to increase the yield of products in the smart manufacturing system. In order to improve the yield of the product, it is necessary to analyze the defect factor that causes the low yield among the numerous factors of the equipment, and find and manage the equipment factor that affects the defect factor. This study analyzed the key factors of abnormal equipment that affect the yield of products in the manufacturing process using the data mining technique. Eventually, a methodology for finding key factors of abnormal equipment that directly affect the yield of products in smart manufacturing systems is presented. The methodology presented in this study was applied to the actual manufacturing plant to confirm the effect of key factors of important facilities on yield.

적응 훈련 신경망을 이용한 플라즈마 식각 공정 수율 향상을 위한 공정 분석 및예측 시스템 개발 (Development of Process Analysis and Prediction Systeme to Improve Yield in Plasma Etching Process Using Adaptively Trained Neural Network)

  • 최문규;김훈모
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.98-105
    • /
    • 1999
  • As the IC(Integrated Circuit) has been densified and complicated, it is required to thorough process control to improve yield. Experts, for this purpose, focused on the process analysis automation, which is came from the strict data management in semiconductor manufacturing. In this paper, we presents the process analysis system that can analyze causes, for a output after processes. Also, the plasma etching process that highly affects yield among semiconductor process is modeled to predict a output before the process. To approach this problem, we use adaptively trained neural networks that exhibit superior accuracy over statistical techniques. And in comparison with methods in other paper, a method that history of trend for input data is considered is shown to offer advantage in both learning and prediction capability. This research regards CD(Critical Dimension) that is considerable in high integrated circuit as output variable of the prediction model.

  • PDF

Improvement of Hardwood Pulp Yield in Continuous Kraft Cooking and Estimation of Pulp Yields Pulp yields of isothermal cooking with polysulfide and anthraquinone

  • Ohi, Hiroshi;Yokoyama, Tomoya
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.2
    • /
    • pp.295-303
    • /
    • 2006
  • The pulp yield was improved by about 4.5-5% when polysulfide (PS) and anthraquinone (AQ) were added to the kraft cooking liquor (white liquor). The exchange of the black liquor with fresh white liquor further increased the yield. The highest pulp yield was obtained when the PS cooking liquor containing 70% of total active alkali (AA) and 100% of AQ was used from the beginning of the reaction and the black liquor was exchanged with fresh white liquor containing the residual 30% of AA just after temperature reached $135^{\circ}C$. There was a good correlation between kraft pulp yields of a hardwood species and the ratios of the amount of xylose to glucose (X/G ratio), liberated by an acid hydrolysis of the pulps. However, the correlation was dependent on raw material wood species. Therefore, it is required in advance to establish a correlation between the yields and X/G ratios for raw material wood species of a target pulp in order to estimate pulp yield using X/G ratio. The X/G ratios of relatively high yield pulps showed higher values than those expected from the correlation. In a mill trial, the superiority of the PS-AQ isothermal cooking (ITC) process over the kraft ITC process was confirmed by examining X/G ratio of pulps obtained. The pulp yield in the PS-AQ ITC process was estimated at about 57.0%. This yield is very high, which indicates that reaction conditions of the PS-AQ ITC process are optimal.

  • PDF

Kraft Pulping of Sapwood-A Sawmill Waste

  • Jahant M. Sarwar;Chowdhury D.A. Nasima;Islam M. Khalidul;Mun Sung Phil
    • 펄프종이기술
    • /
    • 제37권5호통권113호
    • /
    • pp.41-49
    • /
    • 2005
  • This paper deals the effect of anthraquinone (AQ) on the contribution of sulphidity in kraft pulping of sapwood. The pulping conditions namely- active alkali concentration, pulpingtime, temperature and liquor ratio were varied in low ($15\%$) and high ($30\%$) sulphidity. $0.1\%$ AQ was added in the low and high sulphidity pulping with varying active alkali concentration and cooking time. At optimum conditions, low sulphidity kraft process produced about $44\%$ pulp yield with kappa number of about 23. But in high sulphidity kraft process kappa number was reduced to about 20 at the same yield. An addition of AQ reduced alkali requirement by $2\%$ on oven dried raw material and cooking time by 1 hour to produce pulp yield of about $44\%$ at kappa number 20. AQ is more effective in low sulphidity pulping than the high sulphidity pulping. The breaking length of kraft-AQ pulp was slightly higher than that of kraft pulp.