• Title/Summary/Keyword: High-temperature generator

Search Result 289, Processing Time 0.026 seconds

Performance Analysis of Photovoltaic Power Generator by Usage Battery Charge (축전지 사용 유무에 따른 태양광발전기의 성능 분석)

  • Yun, Sung Wook;Choi, Man Kwon;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.220-227
    • /
    • 2013
  • This study examined the electric power quantity derived from solar radiation after installing a photovoltaic power generation system on the rooftop of building adjacent to a greenhouse with a view to reducing the operating expenses of the greenhouse by securing electric energy required to run it. Results of the study can be summed up as follows: The maximum, mean, and minimum solar radiation on the horizontal plane was $26.1MJ{\cdot}m^{-2}$, $14,0MJ{\cdot}m^{-2}$, and $0.6MJ{\cdot}m^{-2}$, respectively and individual the daily electric energy generated was about 6.1 kWh, 3.7 kWh, and 0.01 kWh. The cumulative total amounts of solar radiation and electric energy was about $4,378.2MJ{\cdot}m^{-2}$ and 1,163.2 kWh, respectively. Maximum, mean and minimum cumulative electric energy consumed through each load respectively was 4.5 kWh, 2.4 kWh, and 0.0 kWh and the cumulative electric energy were 739.2 kWh, which accounted for about 63.5% of generated power. In case of the mean amount of power consumption of the system used for this study, the small capacity of heater and the short operating hours meant there was enough power; while big capacity of heater led to a shortage, and if the array surface temperature increased relatively, the energy became proportionate to solar radiation and generated power does not increase. The correlation coefficient between the two factors was 0.851, which indicates a high correlation coefficient.

Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC (고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구)

  • Hong, Suck Joo;Lim, Mun Sup;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.656-662
    • /
    • 2007
  • Fuel reformer using plasma and shift reactor for CO oxidation were designed and manufactured as $H_2$ supply device to operate a polymer electrolyte membrane fuel cell (PEMFC). $H_2$ selectivity was increased by non-thermal plasma reformer using GlidArc discharge with Ni catalyst simultaneously. Shift reactor was consisted of steam generator, low temperature shifter, high temperature shifter and preferential oxidation reactor. Parametric screening studies of fuel reformer were conducted, in which there were the variations of the catalyst temperature, gas component ratio, total gas ratio and input power. and parametric screening studies of shift reactor were conducted, in which there were the variations of the air flow rate, stema flow rate and temperature. When the $O_2/C$ ratio was 0.64, total gas flow rate was 14.2 l/min, catalytic reactor temperature was $672^{\circ}C$ and input power 1.1 kJ/L, the production of $H_2$ was maximized 41.1%. And $CH_4$ conversion rate, $H_2$ yield and reformer energy density were 88.7%, 54% and 35.2% respectively. When the $O_2/C$ ratio was 0.3 in the PrOx reactor, steam flow ratio was 2.8 in the HTS, and temperature were 475, 314, 260, $235^{\circ}C$ in the HTS, LTS, PrOx, the conversion of CO was optimized conditions of shift reactor using simulated reformate gas. Preheat time of the reactor using plasma was 30 min, component of reformed gas from shift reactor were $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% and $CH_4$ 4%.

Performance analysis of a cooling system with refrigerant in a marine absorption refrigerator (선박용 흡수식 냉동기의 냉매적용 냉각 시스템 성능 분석)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.282-287
    • /
    • 2016
  • Recently in order to protect the ocean environment and to reduce energy consumption, shipbuilders have been developing highly economized ships. This research analyzed the possibility of adopting the onshore absorption refrigerator to offshore ships having a cooling system with refrigerant by using the waiste heat of the engine jacket cooling water instead of compression refrigerators. The results showed that R236fa could be a suitable medium for absorbing the heat of the absorber and condenser in an absorption refrigerator. The cooling system using R236fa achieved a high COP of 0.798, which is 15% and 5% higher than an air cooling system with a cooling tower and a water cooling system with a heat exchanger, respectively. The cooling system with R236fa achieved high efficiency with a 25% reduction in flow rate of LiBr solution and only 15.7% flow rate of cooling medium as compared to the water cooling system. The heating of sea water by the engine jacket water flowing out from the generator can prevent the crystallization of LiBr solution due to the low temperature of sea water.

Quasi-monochromatic Parallel Radiography Achieved with a Polycapillary Plate

  • Sato, Eiichi;Komatsu, Makoto;Hayasi, Yasuomi;Tanaka, Etsuro;Mori, Hidezo;Kawai, Toshiaki;Ichimaru, Toshio;Takayama, Kazuyoshi;Ido, Hideaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.418-421
    • /
    • 2002
  • Fundamental study on quasi-monochromatic parallel radiography using a polycapillary plate and a plane-focus x-ray tube is described. The x-ray generator consists of a negative high-voltage power supply, a filament (hot cathode) power supply, and an x-ray tube. The negative high-voltage is applied to the cathode electrode, and the transmission type target (anode) is connected to the ground potential. The maximum voltage and current of the power supply were -100 kV (peak value) and 3.0 mA, respectively. In this experiment, the tube voltage was regulated from 20 to 25 kV, and the tube current was regulated by the filament temperature and ranged from 1.0 to 3.0 mA. The exposure time is controlled in order to obtain optimum film density, and the focal spot diameter was about 10 mm. The polycapillary plate is J5022-21 made by Hamamatsu Photonics Inc., and the outside and effective diameters are 87 and 77 mm, respectively. The thickness and the hole diameter of the polycapillary are 1.0 mm and 25 ${\mu}$m, respectively. The x-rays from the tube are formed into parallel beam by the polycapillary, and the radiogram is taken using an industrial x-ray film of Fuji IX 100 without using a screen. In the measurement of image resolution, we employed three brass spacers of 2, 30, and 60 mm in height. By the test chart, the resolution fell according to increases in the spacer height without using a polycapillary. In contrast, the resolution slightly fell with corresponding increases in the height by the polycapillary. In angiography, fine blood vessels of about 100 ${\mu}$m are clearly visible.

  • PDF

Design and Implementation K-Band EWRG Transceiver for High-Resolution Rainfall Observation (고해상도 강수 관측을 위한 K-대역 전파강수계 송수신기 설계 및 구현)

  • Choi, Jeong-Ho;Lim, Sang-Hun;Park, Hyeong-Sam;Lee, Bae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.646-654
    • /
    • 2020
  • This paper is to develop an electromagnetic wave-based sensor that can measure the spatial distribution of precipitation, and to a electromagnetic wave rain gauge (hereinafter, "EWRG") capable of simultaneously measuring rainfall, snowfall, and wind field, which are the core of heavy rain observation. Through this study, the LFM transmission and reception signals were theoretically analyzed. In addition, In order to develop a radar transceiver, LFM transceiver design and simulation were conducted. In this paper, we developed a K-BAND pulse-driven 6W SSPA(Solid State Power Amplifiers) transceiver using a small HMIC(Hybrid Microwave Integrated Circuit). It has more than 6W of output power and less than 5dB of receiving NF(Noise Figure) with short duty of 1% in high temperature environment of 65 degrees. The manufactured module emits LFM and Square Pulse waveform with the built-in waveform generator, and the receiver has more than 40dB of gain. The transceiver developed in this paper can be applied to the other small weather radar.

Improvement of the performance and emission in a four-stroke diesel engine using fuel additive (4행정 디젤엔진에 연료첨가제 사용에 따른 성능 및 배기배출물 개선에 관한 연구)

  • Ryu, Younghyun;Lee, Youngseo;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.762-767
    • /
    • 2016
  • High thermal efficiency and the ability to use various types of fuel are a few of the many advantages of diesel engines. However, a major disadvantage is that their exhaust emissions are more harmful to humans and the environment than that of conventional engine. Consequently, the provisions of the international emissions standards for diesel engine equipped passenger cars, commercial vehicles, and ships have become more stringent. These standards include the EU Euro 6, the IMO MEPC Tier 3, and the US EPA Tier 4. Ryu et al. published a study that applied fuel additives to two-stroke diesel engines. In this study, a four-stroke diesel engine using diesel oil for a generator is utilized as the test subject, and an experiment is performed to verify whether fuel additive can be used to improve performance and exhaust emissions. In addition, this experimental study presents research results for the application of fuel additives in both two-stroke and four-stroke diesel engines. The experimental results were compared and analyzed by placing an oil-soluble calcium-based organometallic compound in diesel oil. The results confirmed that the addition of fuel additive improved the performance (fuel consumption rate, exhaust gas temperature) and exhaust emissions (NOx, CO) of the diesel engine.

An Air Cleaning Efficiencies of Wet Air Cleaner in the Windowless Swine Fattening Stall in Summer (무창 비육돈사에서 습식공기정화기의 여름철 공기정화효율 분석)

  • Oh, I.H.;Lee, J.H.;Lee, K.H.;Lee, J.H.;Lee, D.S.;Eo, S.M.;Lee, M.L.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.3
    • /
    • pp.133-140
    • /
    • 2006
  • The climate of stall significantly influences on animal production ability. High concentration of ammonia gas, $CO_2$ and lots of dust are found in modern densely raising stall system, as results, they provide a negative influence on animal and farmer health, and production ability. Therefore, it is necessary to keep clean the inside air of stall to increase the productivity. An air cleaner of wet type, consisting of a fan, a motor, rotating discs, a dust collector, a water bowl, an ozone generator etc, has been developed to clean the stall air. The work principle is that the inside air is sucked through the fan, and the rotating discs make water into fineness spray and blow into the stall. The rest water flows down to the dust collector. In the present study, we measured the dust, ammonia gas, odor, temperature and humidity in a swine stall that were installed two wet air cleaners with 700 fattening swine with On-mode and Off-mode of wet air cleaners. The dust measure was divided into 3 categories, TSP, $PM_{10}$, and $PM_{2.5}$. In summer, the TSP in on-mode were maximum $0.259mg/m^3$ and minimum $0.128mg/m^3$, and the average was $0.195mg/m^3$. These are comparable to the data from Off-mode stall that maximum $0.308mg/m^3$, minimum $0.139mg/m^3$, and average $0.277mg/m^3$. However, $PM_{10}$ and $PM_{2.5}$ showed any significant differences between the tests. The concentrations of ammonia gas in Off-mode stall were maximum 13.8 ppm and minimum 5.9 ppm, and the average was 8.47 ppm. However in On-mode stall the ammonia gas concentrations were maximum 10.5 ppm and minimum 5.5 ppm, and the average was 7.63 ppm. The concentration of ammonia gas in On-mode was 10% in average lower than off-mode stall. Odor was measured by olfactometer. In the Off-mode stall, the odor unit were maximum 420 $Ou/m^3$ and minimum $300\;OU/m^3$, and the average was $367\;OU/m^3$, but in the On-mode stall the odor unit were maximum $330\;OU/m^3$ and minimum $210\;OU/m^3$, and the average was $253\;OU/m^3$. Odor removal efficiency was about 31% in On-mode stall.

  • PDF

Techno-Economic Analysis of Reversible Solid Oxide Fuel Cell System Couple with Waste Steam (폐스팀을 이용한 가역 고체산화물 연료전지의 기술적 경제적 해석)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Reversible solid oxide fuel cell (ReSOC) system was integrated with waste steam for electrical energy storage in distributed energy storage application. Waste steam was utilized as external heat in SOEC mode for higher hydrogen production efficiency. Three system configurations were analyzed to evaluate techno-economic performance. The first system is a simple configuration to minimize the cost of balance of plant. The second system is the more complicated configuration with heat recovery steam generator (HRSG). The third system is featured with HRSG and fuel recirculation by blower. Lumped models were used for system performance analyses. The ReSOC stack was characterized by applying area specific resistance value at fixed operating pressure and temperature. In economical assessment, the levelized costs of energy storage (LCOS) were calculated for three system configurations based on capital investment. The system lifetime was assumed 20 years with ReSOC stack replaced every 5 years, inflation rate of 2%, and capacity factor of 80%. The results showed that the exergy round-trip efficiency of system 1, 2, 3 were 47.9%, 48.8%, and 52.8% respectively. The high round-trip efficiency of third system compared to others is attributed to the remarkable reduction in steam requirement and hydrogen compression power owning to fuel recirculation. The result from economic calculation showed that the LCOS values of system 1, 2, 3 were 3.46 ¢/kWh, 3.43 ¢/kWh, and 3.14 ¢/kWh, respectively. Even though the systems 2 and 3 have expensive HRSG, they showed higher round-trip efficiencies and significant reduction in boiler and hydrogen compressor cost.

Efficacy of Listeria Innocua Reduction on Enoki Mushrooms by Utilization of an Air Sterilization Device (공기 살균 장치 적용 팽이버섯 재배사의 Listeria Innocua 저감 효과)

  • Lee, Hyun-Dong;Yu, Byeong-Kee;Seo, Da-Som;Kim, Se-Ri;Lee, Chan-Jung;Kwak, Kang-Su
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.210-215
    • /
    • 2021
  • For sterilization of microorganisms of the Listeria genus contaminating enoki mushroom, pilot mushroom grower equipped with air sterilization devices were developed. Sterilization experiments were performed using physical and chemical treatments. Internal temperature and humidity were controlled, maintaining 6.62℃±0.30 in the upper shelves, 6.46℃±0.24 in the middle shelves, and 6.48℃±0.25 in the lower shelves. Humidities were 79.97%±4.42, 79.43%±4.06, and 79.94±4.30%, respectively, with a temperature setting of 6.5℃, and a relative humidity of 75%. A suitable enoki mushroom cultivation stage for air sterilizer application was during the growth stage, with temperature in the 6.5~8.5℃ range, and humidity of 70~80%. At these same internal conditions, the ozone concentration in the mushroom cultivator was found to be 160 ppb during ion-cluster generator operation. After physical sterilization, the Listeria innocua survival rate was 0.1 to 0.9% using ion cluster sterilization, and 9.3 to 10.6% using UV air sterilization. The Listeria innocua survival rates on different materials were 9.3~10.6% on the metal specimen, and 9.9~16.2% on the plastic wrapper. The survival rate was particularly high on the rough side of the plastic wrapper. Ion cluster air sterilization is a labor-saving and effective method for suppressing the occurrence of Listeria bacteria on mushroom growers walls and shelves. For the plastic wrapper, chemical sterilization is more effective than physical sterilization.