• 제목/요약/키워드: High-temperature compression test

검색결과 139건 처리시간 0.039초

동적재료모델 및 연화모델을 도입한 SAF 2507의 열간단조 유한요소해석 (Implication of Dynamic Materials and Softening Models to the FEM Analysis of SAF2507 Hot Forging)

  • 방원규;정재영;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.195-198
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Applying the dynamic materials and proposed by Prasad et al., it was possible to determine the characteristics of deformation behavior effectively at a given condition of deformation. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. Flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating was found to improve significantly the FEA solutions in predicting the forming load and the distribution of recrystallized volume fraction after forging.

  • PDF

동적재료모델 및 연화모델을 응용한 SAF 2507 강의 열간단조 유한요소해석 (Application of Dynamic Materials and Softening Models to the FEM Analysis of Hot Forging in SAF2507 Steel)

  • 방원규;정재영;장영원
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.308-313
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Using the dynamic materials theory proposed by Prasad, the deformation behavior was effectively determined for various conditions. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. The forming load as well as the distribution of recrystallized volume fraction after forging was successfully predicted by means of the flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating.

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.

나노분말이 함유된 온간단조용 윤활제 마찰특성 (Friction Characteristics of Warm a Forging Lubricant Containing Nano Graphite Powder)

  • 김대원;김영량;이근안;최호준;윤덕재;신영철;이준균;임성주
    • 소성∙가공
    • /
    • 제21권1호
    • /
    • pp.13-18
    • /
    • 2012
  • During warm forging, materials are formed in the temperature range of $300^{\circ}C\sim900^{\circ}C$. In this temperature range, the friction between the forging die and the material is very high and has a negative effect on the forming process causing severe die wear and possible defects in the component because of stick-slip. Thus, lubrication characteristics are a very important factor for productivity during warm forging. In this paper, ring compression experiments were conducted to estimate the friction factor between the die and the materials as the main factor in characterizing the lubricant. Also, ring tests using normal graphite power as a lubricant coating system were compared with tests using nano graphite powder. The results confirm that the nano graphite is superior to the normal graphite in view of its lubricating effect. In addition, the friction factor (m) was estimated with respect to the amount of the nano graphite content in the lubricant. With 10 % nano graphite the friction factor had the lowest value as compared to other amounts. It can be concluded that the amount of the nano graphite in the coating system can be optimized to obtain the best lubrication condition between the die and the material using ring test experiments.

대형 디젤엔진용 배기밸브의 단조공정에 관한 연구 (Investigation of the Forging Process of Exhaust Valve for Large Diesel Engine)

  • 김동권;김동영;석진익;류석현;김동진;김병훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.627-632
    • /
    • 2001
  • Nimonic 80A superalloy with high-temperature strength and high corrosion-resistance is used in jet engine for aircraft, gas turbine for power plant and marine diesel engine, etc. To develop the manufacturing process of exhaust valve for large diesel engine using Nimonic 80A, various mechanical tests, such as hot compression, microstructure and hardness test have been performed. This results effectively used to set the reasonable forging conditions while hot forging of Nimonic 80A superalloy. Open die and closed die forging experiments are carried out from ESR ingot and finally get a good shaped exhaust valve product.

  • PDF

Strength and Efficiency during Lap Joining Molding of GMT-sheet

  • Kim, Jin-Woo;Kim, Hyoung-Seok;Kim, Tae-Ik;Lee, Dong-Gi;Sim, Jae-Ki
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.1018-1023
    • /
    • 2012
  • In order to substitute and recycle the existing automobile parts for GMT-sheet, researches on the effects of GMT-sheet on the establishment of precise joining strength, joining condition that are lap length of joining part, compression ratio, and closure speed must be carried out but until now. Besides, many researches on adhesion joint had been conducted until now but no systematic research on press lap joint of GMT-sheet has been implemented until recently and the reliability of joining strength is not yet established. In press lap joining molding of GMT-sheet, tensile stress and lap joining connection efficiency was increased according to the increase of lap length L. However, as the increase of compression ratio and fiber content ratio per unit area was higher in tensile test, it has caused the deterioration of lap joining efficiency after joining molding of GMT-sheet. Clarify joining strength and lap joining efficiency during high temperature compression press lap joining molding of GMT-sheet and research data regarding to the lap length of joining part was presented. The purpose of this study is to contribute to the substitution of existing products as well as usage development in non-automobile field and also to find out precise dynamic characteristics as designing data of structures.

PREDICTION OF MICROSTRUCTURE DURING HIGH TEMPERATURE FORMING OF Ti-6Al-4V ALLOY

  • Lee Y. H.;Shin T. J.;Yeom J. T.;Park N. K.;Hong S. S.;Shim I. O.;Hwang S. M.;Lee C. S.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.43-46
    • /
    • 2003
  • Prediction of final microstructures after high temperature forming of Ti-6Al-4V alloy was attempted in this study. Using two typical microstructures, i.e., equiaxed and $Widmanst\ddot{a}tten$ microstructures, compression test was carried out up to the strain level of 0.6 at various temperatures $(700\~1100^{\circ}C)$ and strain rates $(10^{-4}\~10^2/s)$. From the flow stress-strain data, parameters such as strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equations for both microstructures. Then, finite element analysis was performed to predict the final microstructure of the deformed body, which was well accorded with the experimental results.

  • PDF

2성분 혼합연료를 이용한 감압비등 분무특성에 관한 연구 (A Study on the Spray Characteristics of Flash Boiling Using Two Component Mixing Fuel)

  • 명광재;윤준규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.451-458
    • /
    • 2009
  • This experimental study was conducted to investigate macroscopic characteristics of the flash boiling spray with tow component mixing fuel. Homogeneous Charge Compression Ignition (HCCI) is a newer combustion method for internal combustion engines to reduce nitrogen oxide and particulate matter simultaneously. But it is difficult to put this combustion method to practical use in an engine because of such problems as instability of combustion in low load operating conditions and knocking in high load operating conditions. In HCCI, combustion characteristics and exhaust emissions depend on conditions of air/fuel mixture and chemical reactions of fuel molecules. The fuel design approach is achieved by mixing two components which differ in properties such as density, viscosity, volatility, ignitability and so on. We plan to apply the fuel design approach to HCCI combustion generated in a real engine, and examine the possibility of mixture formation control using the flash boiling spray. Spray characteristics of two component fuel with a flash boiling phenomenon was investigated using Shlieren and Mie scattering photography. Test fuel was injected into a constant volume vessel at ambient conditions imitated injection timing BTDC of a real engine. As a result, it was found that a flash boiling phenomenon greatly changed spray structure, especially in the conditions of lower temperature and density. Therefore, availability of mixture formation control using flash boiling spray was suggested.

알칼리 수전해 적용을 위한 하이브리드 다공성 격리막 제조 및 특성평가 (Preparation and Evaluation of Hybrid Porous Membrane for the Application of Alkaline Water Electrolysis)

  • 한성민;임광섭;정하늘;김도형;남상용
    • 멤브레인
    • /
    • 제31권6호
    • /
    • pp.443-455
    • /
    • 2021
  • 본 연구에서는 낮은 막 저항을 가지는 알칼리 수전해 시스템 적용을 위한 격리막 제조를 위하여 PPS (Polyphenylene sulfide)를 지지체로 사용하고 Polysulfone과 무기물 첨가제를 이용하여 격리막을 제조한 뒤, 지지체의 두께와 다공도에 대한 영향을 분석하였다. 지지체로 사용된 PPS 펠트를 온도(100℃, 150℃, 200℃)와 압력(1톤, 2톤, 3톤, 5톤)의 변수를 두어 압축을 진행하여 두께를 조절하고자 하였으며, 무기입자로서 친수성이 높고 내알칼리성이 뛰어난 BaTiO3와 ZrO2를 사용하여 polysulfone과 함께 슬러리를 제조하고 압축한 PPS 펠트 위에 캐스팅하여 다공성 격리막을 제조할 수 있었다. 전자주사현미경(SEM)을 통해 압축 조건에 따른 분리막의 모폴로지 변화를 확인하고, 기공도를 계산하였으며, 압축 조건이 증가할수록 두께와 기공도가 감소하는 경향을 확인하였다. 수전해용 격리막으로서 사용이 가능한지를 확인하기 위하여 다양한 특성 평가를 진행하였다. 기계적강도를 측정한 결과 압축 조건(온도와 압력)이 증가할수록 인장강도가 점차 증가하는 경향을 확인하였다. 최종적으로 내알칼리성 테스트를 통하여 제조한 다공성 격리막이 우수한 내알칼리성을 가지는 것을 확인하였고, I-V 테스트를 통하여 100℃와 150℃ 조건에서 압축된 막들이 기존의 압축하지 않은 막보다 낮은 전압을 가지며 성능이 향상되었다는 것을 확인하였다.

섬유금속적층판 제작을 위한 PTFE 몰드 기반 마이크로파 공정에 대한 실험적 연구 (Experimental Study on Manufacturing Fiber Metal Laminate using Microwave Heating Based on PTFE Mold)

  • 박으뜸;이영헌;김정;강범수;송우진
    • 소성∙가공
    • /
    • 제29권4호
    • /
    • pp.179-187
    • /
    • 2020
  • Existing composite forming processes such as the autoclave, prepreg compression forming (PCF), RTM, etc. require high production costs because of their long processing time. On the other hand, microwave heating process (MHP) can reduce the production costs since both mold and composite material can be heated directly. The aim of this study is to manufacture a mold consisting of polytetrafluoroethylene (PTFE), quartz glass, stainless steel clamps, and polyether ether ketone (PEEK) bolts for fabricating FML based on self-reinforced polypropylene (SRPP) using the MHP. First, the flame test was carried out prior to the MHP to check the temperature on the mold and whether the spark occurred at the mold and the edge of the FML. Second, the uniaxial tensile test was then conducted to obtain the mechanical properties of the FML manufactured by the MHP. The mechanical properties were compared with those of the FML fabricated by the PCF. As a result, the MHP using the PTFE mold can manufacture the FML more rapidly than the PCF, and obtain acceptable mechanical properties.