• Title/Summary/Keyword: High-strength wire

검색결과 179건 처리시간 0.022초

A Study on Corrosion Properties of welded Alloy 625 for Ship Structure by Shielding Gases Composite Ratio (선체 구조용 Alloy 625의 용접시 보호가스 조성비에 따른 부식특성에 관한 연구)

  • An Jae-Pil;Park Keyung-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권4호
    • /
    • pp.399-406
    • /
    • 2005
  • Alloy 625 is used widely in industrial applications such as aeronautical aerospace, chemical, petrochemical and marine applications. Because of a good combination of yield strength. tensile strength, creep strength, excellent fabricability, weldability and good resistance to high temperature corrosion on prolonged exposure to aggressive environments. High qualify weldments for this material are readily produced by commonly used processes. But all of processes are not applicable to this material by reason of unavailability of matching, position or suitable welding filler metals and fluxes may limit the choice of welding processes. Recently, the flux cored wire is developed and applied for the better productivity in several welding position including the vortical position. In this study. the weldability and weldment characteristics of Alloy 625 are evaluated in FCAW weld associated with the several shielding gases($80\%Ar+20\%\;CO_2,\;50\%Ar+50\%\;CO_2.\;100\%\;CO_2$) in viewpoint of welding productivity. The results of the experimental study on corrosive characteristics of Alloy 625 are as follows; There is no remarkable difference among shielding gases. however they has a striking difference among corrosive solutions by results of distinguished density and time of corrosive solution. Generally, the shielding gases($80\%Ar+20\%\;CO_2$) was superior to the other gases on high temperature tensile and a low temperature impact. but all of the shield gases were making satisfactory results on corrosion test.

Effects of an Electric Field on the Dynamic Characteristics of Bubbles in Nucleate Boiling (핵비등에서 기포의 동특성에 대한 전기장의 효과)

  • 권영철;장근선;권정태;김무환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제12권11호
    • /
    • pp.963-971
    • /
    • 2000
  • In order to investigate the effects of an electric field on EHD(Electro-hydrodynamic) nucleate boiling hat transfer characteristics in a nonuniform electric field under saturated pool boiling, the basic study has been performed experimentally. In the present study, the working fluid is R-113 and the plate-wire electrode system is used to generate a steep electric field gradient. Boiling parameters are investigated by using a high speed camera. The electric field distribution around a wire is obtained to understand the effect of an electric field on bubble departure/movement. The experimental results show EHD effects are much more considerable when the applied voltage increases. Bubbles depart away from the heated wire in radial direction. It is confirmed that the mechanisms of EHD nucleate boiling are closely connected with the dynamic behavior of bubbles. The boiling parameters are significantly changed by the electric field strength. With increasing applied voltages, the bubble size decreases and the nucleation site density, bubble velocity and bubble frequency increase.

  • PDF

Measurement of Transfer Length for a Seven-Wire Strand with FBG Sensors (FBG 센서를 이용한 강연선 전달길이 측정)

  • Lee, Seong-Cheol;Choi, Song-Yi;Shin, Kyung-Joon;Kim, Jae-Min;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제28권6호
    • /
    • pp.707-714
    • /
    • 2015
  • In this paper, an experimental program has been conducted to investigate transfer length in high strength concrete members pretensioned through a seven-wire strand with FBG sensors. To measure transfer length, five members were fabricated, which had a length of 3 m and a cross-section of $150{\times}150mm$. It was measured that the concrete compressive strength was 58MPa at pretensioning. Test results indicated that more precise and reliable measurement on the transfer length was attained with FBG sensors than conventional gauges attached on concrete surface. Through comparing the measured transfer length and predictions, applicability of several transfer length models in literature was investigated. This paper can be useful for relevant research field such as investigation on the bond mechanism of a seven-wire strand in concrete members.

A Wire-Woven Kagome Transformed to have a Negative Poisson's Ratio (음의 푸아송비를 갖도록 변환된 와이어 직조 Kagome)

  • Kang, Dae Seung;Han, Seung Chul;Park, Jong Woo;Nguyen, Dang Ban;Kang, Kiju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제40권9호
    • /
    • pp.827-833
    • /
    • 2016
  • Wire-woven Kagome is a kind of Periodic Cellular Metal, which is known to have high strength, stiffness for its weight, and potential for mass production. In this work, we developed a new structure that mimics ${\alpha}$-cristobalite. First, an ordinary wire-woven Kagome was fabricated using metallic wires, and the tetrahedral cells were then filled with metal balls and epoxy. The wire-woven Kagome was transformed to have a negative Poisson's ratio by carrying out a specified amount of initial deformation. The fabrication possibility and kinematic behavior were checked by using FEA simulation. Finally, the mechanical properties were measured using compressive tests.

Development of a Steady Arm for the Maximum Speed of 400 km/h (400 km/h급 전차선로 곡선당김금구 개발)

  • Lee, Kiwon;Park, Young;Kwon, Sam-Young;Cho, Yong Hyeon;Jeong, Heonsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제63권12호
    • /
    • pp.1742-1746
    • /
    • 2014
  • In order to develop a overhead catenary system for the maximum speed of 400 km/h on Honam high-speed line, increasing tension of contact wire, changing dropper distributions, reducing a hard point and etc. should be considered. And it is also essential to develop core components taking account of the increased tension. Therefore we developed a new steady arm for the max. speed of 400 km/h in this study. FEM (Finite Elements Method) analysis was performed to ensure the strength of the arm. An oval shape was applied to the arm, so that 25 % of strength was increased and 9 % of weight was decreased. And a type test according to the code KRSA-3012 was performed to ensure the performance. Fatigue test in KRRI (Korea Railroad Research Institute)'s test-bed was also performed to evaluate its performance. Some section of the Honam High-speed line was constructed with the developed steady arm.

Analysis of the Major Design Parameters of a Pantograph-Railway Catenary System for Improving the Current Collection Quality (집전성능 향상을 위한 팬터그래프-전차선의 주요 설계 파라미터분석)

  • Cho, Yong Hyeon
    • Journal of the Korean Society for Railway
    • /
    • 제17권1호
    • /
    • pp.7-13
    • /
    • 2014
  • Stiffness variations and wave propagation/reflection in railway catenaries are the primary sources of contact loss between a pantograph and a railway contact wire. This paper analyzes which design parameter is more important for 200km/h conventional rail and 300km/h high-speed rail, in order to effectively reduce the contact loss. For the high-speed rail, the wave propagation and reflection in the overhead contact lines are more influential than the stiffness variation over a span. When the high-speed rail needs to speed-up, it is necessary to develop higher strength contact wires in order to increase the wave propagation speed. In addition, the dropper clamp mass should be reduced in order to alleviate the wave reflection. However, it is noted that the increase in the tension to a messenger wire could deteriorate the current collection quality, which contrasts with expectations. For the 200km/h conventional rail, the stiffness variation over a span is more influential than the wave propagation and reflection. Therefore, shortening span length, increasing the tension in the contact wire and optimizing the location of the droppers are recommended for a smoother stiffness variation over the span.

The effect of compress residual stresses for fatigue strength of Spring Steel (스프링강의 피로강도에 미치는 압축잔유응력의 영향)

  • 박경동;정찬기
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.338-343
    • /
    • 2001
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface defect as like decarburization, surface roughness etc., In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of shot peening of two-stage shot peening and single-stage shot peening. And for this study, two kinds of spring steel(SAE 9254, DIN 50CrV4) are made. This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from (1) on low stress condition, the single stage shot peening is not affected by nonmetallic inclusion under metal. (2) it is possible that the two-stage shot peening increases the fatigue life and the high stress, but, that is affected by nonmetallic inclusion under metal. (3) so far, beeasily 50CrV4 have made high stress. But, results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF

Tensile Properties of Energy Saving Wire (ESW) with respect to Temperatures of High Frequency Induction Heat Treatment (고주파 열처리 온도에 따른 선조질강의 인장특성)

  • Lee, Jin Beom;Kang, Namhyun;Park, Ji Tae;Ahn, Soon-Tae;Park, Yeong-Do;Choi, Il-Dong;Nam, Dae-Geun;Cho, Kyung-mox
    • Korean Journal of Metals and Materials
    • /
    • 제48권11호
    • /
    • pp.974-980
    • /
    • 2010
  • Various types of steel, namely, 0.35C, 0.2C-Cr, and 0.2C-Cr-Mo steels, were quenched and tempered by high-frequency induction heat treatment. The type, size, and spheroidization of the carbides varied depending on the tempering temperatures ($450{\sim}720^{\circ}C$). During the tempering process, the carbide was precipitated in the martensite matrix. The 0.35C, 0.2C-Cr, and 0.2C-Cr-Mo steels contained carbides that were smaller than 120 nm. The carbide was spheroidized as the tempering temperature increased. Owing to the fine microstructure and spheroidization of the carbides, all three steels had a high tensile strength as well as yield ratio and reduction of area. In the case of the 0.2C-Cr steel, the use of Cr as an alloying element facilitated the precipitation of alloyed carbides with an extremely small particle and resulted in an increase in the spheroidization rate of the carbides. As a result, a large reduction of area was achieved (>70%). The 0.2C-Cr-Mo steel had the highest tensile strength because of the high hardenability that can be attributed to the presence of alloying elements (Cr and Mo). Quenching and tempering steels by induction heat treatment resulted in a high strength of over 1 GPa and a large reduction of area (>70%) because of the rapid heating and cooling rates.

Static and dynamic analytical and experimental analysis of 3D reinforced concrete panels

  • Numayr, K.;Haddad, R.
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.399-406
    • /
    • 2009
  • A three-dimensional panel system, which was offered as a new method for construction in Jordan using relatively high strength modular panels for walls and ceilings, is investigated in this paper. The panel consists of two steel meshes on both sides of an expanded polystyrene core and connected together with a truss wire to provide a 3D system. The top face of the ceiling panel was pored with regular concrete mix, while the bottom face and both faces of the wall panels were cast by shotcreting (dry process). To investigate the structural performance of this system, an extensive experimental testing program for ceiling and wall panels subjected to static and dynamic loadings was conducted. The load-deflection curves were obtained for beam and shear wall elements and wall elements under transverse and axial loads, respectively. Static and dynamic analyses were conducted, and the performance of the proposed structural system was evaluated and compared with a typical three dimensional reinforced concrete frame system for buildings of the same floor areas and number of floors. Compressive strength capacity of a ceiling panel is determined for gravity loads, while flexural capacity is determined under the effect of wind and seismic loading. It was found that, the strength and serviceability requirements could be easily satisfied for buildings constructed using the three-dimensional panel system. The 3D panel system is superior to that of conventional frame system in its dynamic performance, due to its high stiffness to mass ratio.

Manufacturing Process Design of High Strength Al 6056 Bolts by Strain Hardening Effect (가공경화를 이용한 고강도 Al 6056 볼트의 생산 공정설계)

  • Park, J.S.;Kim, Y.B.;Kim, S.W.;Kim, H.S.;Ann, K.H.;Park, J.S.;Kang, J.H.
    • Transactions of Materials Processing
    • /
    • 제30권4호
    • /
    • pp.165-171
    • /
    • 2021
  • This study was conducted on the manufacturing method of high-strength aluminum bolts. We obtained the displacement-load information by tensile test of the Al 6056 raw material and the T6 heat-treated material and calculated the precise flow stress and fracture limit using repetitive finite element analysis for before and after heat treatment. We designed a multi-stage forging process for T6 heat-treated material, and calculated that the accumulated damage value does not exceed fracture limits by finite element method. We produced the prototype forgings without any harmful defects such as cracks and folding occurring. Bolts made of T6 heat treated material show 9.6%higher tensile strength than T6 heat treated material after wire drawing.