• Title/Summary/Keyword: High-strength rockfall net (1,000 Mpa, 2,000 Mpa)

Search Result 2, Processing Time 0.016 seconds

Performance Evaluation of High-strength Rockfall Net on Field Test (현장 테스트를 통한 고강도 선제 포획망 성능 테스트)

  • Hyunwoo Jin;Sanghoon Seo;Youngcheol Hwang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.3
    • /
    • pp.15-21
    • /
    • 2023
  • Although standards related to falling stone facilities are established in Korea, the absorption energy of the rockfall prevention net is evaluated from the passage of rockfall and destruction of the rockfall prevention net on field test. The existing PVC coating net does not sufficiently suppress the rockfall load and tears frequently occur, and a high-strength wire rockfall net was developed to prevent. In this study, the performance was analyzed through field tests of the existing PVC coating net and the developed high-strength rockfall net (1,000 MPa, 2,000 MPa).

Punching Test for Development of High-strength Rockfall Net (고강도 포획망 개발을 위한 펀칭시험)

  • Hyunwoo Jin;Sanghoon Seo;Youngcheol Hwang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.25-30
    • /
    • 2023
  • The high-strength rockfall net developed in this study is to replace the fallout prevention net method using PVC coating net made of core wire thickness 3.2 mm and tensile strength 290-540 MPa class steel wire. General PVC coating net have low performance, and in the event of falling rocks or surface loss, they cannot withstand the load and are torn, which rather adds to the damage. Developed rockfall net was manufactured using steel wires with a core wire thickness of 2.8 to 3.2 mm and a tensile strength of 1,000 to 2,000 MPa. Test method was referred to the international standard Steel wire rope net panels and rolls-Definitions and specifications (ISO 17746:2016), and was conducted in accordance with the provisions of the punching test. Through indoor punching tests, the load-displacement curves of the general PVC coating network and the developed high-strength capture net (1,000 and 2,000 MPa) were compared, and the maximum Pull-out load was analyzed to be improved by 324.47% (2,000 MPa high-strength net).