• Title/Summary/Keyword: High-speed tracking

Search Result 379, Processing Time 0.027 seconds

Modeling, Identification and Control of a Redundant Planar 2-DOF Parallel Manipulator

  • Zhang, Yao-Xin;Cong, Shuang;Shang, Wei-Wei;Li, Ze-Xiang;Jiang, Shi-Long
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.559-569
    • /
    • 2007
  • In this paper, the dynamic controller design problem of a redundant planar 2-dof parallel manipulator is studied. Using the Euler-Lagrange equation, we formulate the dynamic model of the parallel manipulator in the joint space and propose an augmented PD controller with forward dynamic compensation for the parallel manipulator. By formulating the controller in the joint space, we eliminate the complex computation of the Jacobian matrix of joint angles with end-effector coordinate. So with less computation, our controller is easier to implement, and a shorter sampling period can be achieved, which makes the controller more suitable for high-speed motion control. Furthermore, with the combination of static friction model and viscous friction model, the active joint friction of the parallel manipulator is studied and compensated in the controller. Based on the dynamic parameters of the parallel manipulator evaluated by direct measurement and identification, motion control experiments are implemented. With the experiments, the validity of the dynamic model is proved and the performance of the controller is evaluated. Experiment results show that, with forward dynamic compensation, the augmented PD controller can improve the tracking performance of the parallel manipulator over the simple PD controller.

Waveform Generator for W-band Compact Radar (W-band 소형 레이다용 파형발생부)

  • Lee, Man-Hee;An, Se-Hwan;Kim, Young-Gon;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.97-102
    • /
    • 2018
  • In this paper, W-band Waveform Generator for compact radar has been designed and fabricated. DDS (Direct Digital Synthesizer) is applied to generate CW (Continuous Wave) and FMCW (Frequency Modulation Continuous Wave) waveform at high speed. We designed two LO (Local Oscillator) paths for functions of distance delay and distance tracking tests at the prpposed system without extra test equipment. Two mode selections are provided by switch. It is observed that fabricated waveform generator performs -91 dBc/Hz phase noise at offset 1 kHz and -63.2 dBc spurious. Proposed W-band Waveform Generator is expected to apply for W-band compact radar transceiver module.

Real-Time Automatic Target Tracking Based on Spatio-Temporal Gradient Method with Generalized Least Square Estimation (일반화 최소자승추정의 시공간경사법에 의한 실시간 자동목표 추적)

  • Jang, Ick-Hoon;Kim, Jong-Dae;Kim, Nam-Chul;Kim, Jae-Kyoon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.78-87
    • /
    • 1989
  • In this paper, a spatio-temporal gradient (STG) method with generalized least square estimation (GLSE) is proposed for the detection of an object motion in an image sequence corrupted by white Gaussian noise. The proposed method is applied to an automatic target tracker using a high speed 16-bit microprocessor in order to track one moving target in real time. Experimental results show that the proposed method has much better performance over the conventional one with least square estimation (LSE).

  • PDF

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method (적응 Feedforward를 이용한 자기베어링 고속 주축계의 전기적 런아웃 제어)

  • 노승국;경진호;박종권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.57-63
    • /
    • 2002
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensor fur control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking and stability performances numerically with established frequency response function. The tested grinding spindle system is manufactured with a 5.5 ㎾ internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15 ~ 30 ${\mu}{\textrm}{m}$ of electrical runout. According to the experimental analysis, the error signal in radial bearings is reduced to less than 5 ${\mu}{\textrm}{m}$ when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and vibration of the spindle base is also reduced about same frequency.

A Study on High Performance Controller Design of Elastic Maniplator (탄성매니퓰레이터의 고성능 제어기 설계에 관한 연구)

  • Lee, Ji-U;Han, Seong-Hyeon;Lee, Man-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.73-82
    • /
    • 1992
  • An industrial robot, installed real manufacturing processes an element of the system autmation, can be considered as an uncertain system due to dynamic uncertainties in inertial parameters and varying payloads. Most difficuties in controlling a robot manipulator are caused by the fact that the dynamic equations describing the motions of the manipulator are inherently nonlinear and heavily coupled effects between joints and associated links. Existing robot conrol systems have constant predefined gains and do not cover the complex dynamic interactions between manipulator joints. As a result, the manipulator is severly limited in range of application, speed of operation and variation of payload. The proposed controller is operated by adjusting its gains based on the response of the manipulator in such a way that the manipulator closely matches the reference model trajectories defined by the desinger. The proposed manipulator studied has two loops, an inner loop of model reference adaptive controller and an outer loop of state feedback controller with integral action to guarantee the stability of the adaptive scheme. This adaptation algorithm is based on the hyperstailiy approach with an improved Lyapunov function. The coupling among joints and the nonlinearity in the dynamic equation are explicitly considered. The designed manipulator controller shows good tracking performance in practical working environment, various load variations and parameter uncertainties.

  • PDF

Reserve distribution to maximize the kinetic energy of a wind power plant (풍력단지의 최대 운동에너지 보유를 위한 예비력 분배)

  • Yoon, Gihwan;Lee, Jinsik;Lee, Hyewon;Kang, Yong Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.179-180
    • /
    • 2015
  • High wind penetration might cause the frequency stability problem because a wind power plant (WPP) is operating in a maximum power tracking mode to extract the maximal energy from wind and thus does not react to the system frequency variation. Therefore, the system operators encourage a WPP to participate in frequency control, which includes inertia/orl and primary control. The frequency support capability of a WPP depends on the amount of kinetic energy (KE) and reserve. This paper formulates an optimization problem to maximize KE while retaining the required reserve. The proposed optimization problem would allow wind generators (WGs) with a smaller wind speed to retaine more KE. The performance of the proposed optimization problem was investigated in a 100-MW WPP consisting of 20 units of 5-MW permanent magnet synchronous generators using an EMTP-RV simulator. The results show that the proposed optimization problem successfully improves the frequency nadir more than a conventional reserve allocation that distributes WGs proportional to the current output.

  • PDF

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method

  • Ro Seung-Kook;Kyung Jin-Ho;Park Jong-Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.19-25
    • /
    • 2005
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensors for control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking performances and stability numerically with established frequency response function. The designed feedforward controller was applied to a grinding spindle system which is manufactured with a 5.5 kW internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15∼30㎛ of electrical runout. According to the experimental results, the error signal in radial bearings is reduced to less than 5 ,Urn when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and corresponding vibration of the spindle is also removed.

In situ behavioral and acoustic characteristics of the large jellyfish Nemopliema nomurai by target tracking (수중음향을 이용한 노무라입깃해파리의 행동 및 음향산란특성)

  • Yoon, Eun-A;Hwang, Doo-Jin;Shin, Hyeong-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.2
    • /
    • pp.272-278
    • /
    • 2015
  • The aim of this study is to find out the behavior and acoustic backscattering of the large jellyfish Nemopliema nomurai using hydroacoustics in situ. N. nomurai was distributed at depths ranging from 10~15 m during the day. Regarding the behavior of N. nomurai, there was no significant change in depth, and 3D tortuosity was not high. The vertical direction was ${\pm}10^{\circ}$ from the horizontal, and moving speed was $0.9{\sim}1.5\;m\;s^{-1}$. With regard to hydro-acoustical characteristics, the mean TS of N. nomurai ranged from -69.6~-56.0 dB at 38 kHz and -69.4~-54.5 dB at 120 kHz. TS variation (Max TS-Min TS) at 38 and 120 kHz was 0~10.2 dB and 0.2~16.0 dB, respectively. Mean TS and TS variation (Max TS-Min TS) of N. nomurai were higher at 120 kHz than at 38 kHz. The results showed that the use of hydroacoustics was effective in estimating the distribution depth, behavior, and acoustic characteristics of the target.

Modelling cavitating flow around underwater missiles

  • Petitpas, Fabien;Saurel, Richard;Ahn, Byoung-Kwon;Ko, Sung-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.263-273
    • /
    • 2011
  • The diffuse interface model of Saurel et al. (2008) is used for the computation of compressible cavitating flows around underwater missiles. Such systems use gas injection and natural cavitation to reduce drag effects. Consequently material interfaces appear separating liquid and gas. These interfaces may have a really complex dynamics such that only a few formulations are able to predict their evolution. Contrarily to front tracking or interface reconstruction method the interfaces are computed as diffused numerical zones, that are captured in a routinely manner, as is done usually with gas dynamics solvers for shocks and contact discontinuity. With the present approach, a single set of partial differential equations is solved everywhere, with a single numerical scheme. This leads to very efficient solvers. The algorithm derived in Saurel et al. (2009) is used to compute cavitation pockets around solid bodies. It is first validated against experiments done in cavitation tunnel at CNU. Then it is used to compute flows around high speed underwater systems (Shkval-like missile). Performance data are then computed showing method ability to predict forces acting on the system.

A Study on the Rationalization of Management and Maintenance Cost for Railway Investment Assessment - Focus on High Speed Railway - (철도투자평가를 위한 운영.유지보수비용 합리화 방안 - 고속철도를 중심으로 -)

  • Suh, Sang-Kyo;Sung, Deok-Yong;Roh, Byoung-Kuk;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.331-340
    • /
    • 2009
  • This study is objected by suggesting rationalization method of management and maintenance cost for railway investment assessment. The estimate of rational benefit and cost are a work of vital importance to decide railway investment as preliminary feasibility investigation is institutionally reinforced since January 2007. In particular, railway management and maintenance cost have to be applied to realistic and detail cost as railway investment assessment guide. For example, types of railway, construction of new line, improvement of conventional line, double tracking, railway electrification. However, railway investment assessment is inconsistency because of estimating the railway management and maintenance cost using existing unrealistic management and maintenance cost. Therefore, this study is performed parametric analysis effecting on the railway management and maintenance cost considered new technique, enhanced facilities and improved standard. Also, it suggests the itemized standard management and maintenance cost. Finally, it will be helped to establish the base of railway investment through the rationalization method of management and maintenance cost.

  • PDF