• Title/Summary/Keyword: High-speed signal

Search Result 1,496, Processing Time 0.034 seconds

An Implementation of Acoustic Echo Canceller Using Adaptive Filtering in Modulated Lapped Transform Domain (Modulated Lapped Transform 영역에서 적응 필터링을 이용한 음향 반향 제거기의 구현)

  • 백수진;박규식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.425-433
    • /
    • 2003
  • Acoustic Echo Canceller (AEC) is a signal processing system for removing unwanted echo signals in teleconference and hands-free communication. Least mean square (LMS) algorithm is one of the adaptive echo cancellation algorithms and it has been most attractive because of its simplicity and robustness. However, the convergence properties of the LMS algorithm degrade with highly correlated input signals such as speech. For this reason, transform-domain adaptive filtering algorithm was introduced to decorrelate the colored input samples by using the orthogonal transform matrix such as DCT, DFT and then LMS adaptive filtering process is applied. In this paper, we propose a MLT domain adaptive echo canceller base on the MLT (Modulated lapped Transform) orthogonal transform matrix. The proposed algorithm achieves high decorrelation efficiency and fast convergence speed via modulated lapped transform of size 2NXN instead of NXN unitary transform such as DCT, DFT, Hadamad and it is applied to the acoustical echo cancellation system. Form the computer simulation with both synthesis and real speech, the proposed MLT domain adaptive echo canceller shows approximately twice faster convergence speed and 20∼30 ㏈ ERLE improvements over the DCT frequency domain acoustic echo cancellation system.

Measurement Analysis of RSSI and CINR of IEEE 802.16e in an Ocean Environment (해상환경에서 IEEE 802.16e의 RSSI 및 CINR 측정 분석)

  • Jung, Sung-Hun;Kim, Byung-Chan;Yang, Gyu-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.916-925
    • /
    • 2009
  • 4S (Ship to Ship, Ship to Shore) communication is the key to strategic development of e-navigation, a core element of IT vessel convergence. 4S communication is intended to integrate and standardize various communication infrastructures on land and communication equipment complying with communication equipment equipped in ships. This paper aims to apply the Korean technology IEEE 802.16e adopted as an international standard, to replace and compensate for existing vessel communication media such as low speed HF/MF/VHF to the ocean environment. To this end, various experimental conditions between the coast station where a relay station was installed and related equipment equipped on a ship are set. Communication signals were monitored and the RSSI and CINR were measured. Based on experimental analysis and results, various challenges and solutions which may occur in ocean environment were sought, and communication availability was analyzed through transmission data throughput, at the maximum effective distance range of the signal. It was proven that high speed multimedia data could be exchanged for up to 20 km even among 80km kph ships moving around near the sea, ensuring that this technology could be applied to the ocean environment.

  • PDF

The Efficacy of Biofeedback in Reducing Cybersickness in Virtual Navigation (생체신호 피드백을 적용한 가상 주행환경에서 사이버멀미 감소 효과)

  • 김영윤;김은남;정찬용;고희동;김현택
    • Science of Emotion and Sensibility
    • /
    • v.5 no.2
    • /
    • pp.29-34
    • /
    • 2002
  • Our previous studies investigated that narrow field of view (FOV : 50˚) and slow navigation speed decreased the frequency of occurrence and severity of cybersickness during immersion in the virtual reality (VR). It would cause a significant reduction of cybersickness if it were provided cybersickness alleviating virtual environment (CAVE) using biofeedback method whenever subject underwent physiological agitation. For verifying the hypothesis, we constructed a real-time cybersickness detection and feedback system with artificial neural network whose inputs are electrophysiological parameters of blood pulse volume, skin conductance, eye blink, skin temperature, heart period, and EEG. The system temporary provided narrow FOV and decreased speed of navigation as feedback outputs whenever physiological measures signal the occurrence of cybersickness. We examined the frequency and severity of cybersickness from simulator sickness questionnaires and self-report in 36 subjects. All subjects experienced VR two times in CAVE and non-CAVE condition at one-month intervals. The frequency and severity of cybersickness were significantly reduced in CAVE than non-CAVE condition. Virtual environment of narrow FOV and slow navigation provided by electrophysiological features based artificial neural network caused a significant reduction of cybersickness symptoms. These results showed that efficiency of a cybersickness detection system we developed was relatively high and subjects expressed more comfortable in the virtual navigation environment.

  • PDF

The Transmission of Tele-Information System using BlueTooth (블루투스를 이용한 웹으로의 원격 의료정보 전송 시스템)

  • 채희영;강형원;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.130-133
    • /
    • 2002
  • As a society advances, an aging phenomenon and many diseases which did not exist in old times are happening. Especially, in case of the aged patient, because we cant know the time the condition of the patients health become worse, the study of the Tele-information system has been actively carried out by the necessity of a persistent observation. A ECG signal a kind of a vital signals has been widely used to the medical information system as an usual clinical diagnosis for the patients who possess heart diseases. BlueTooth is a close range wireless communication technology which uses a wireless frequency 2.4GHz and has a high trust and self - error correction technology according to a low power consumption quality and a high-speed frequency hopping. This makes get a high trust concerning a data transmission than an existing modem. In addition, though wireless modem is restricted by a minimal of a wireless terminal, It will be possible to coincide with the function of the portable with the low power consumption quality by using Bluetooth. And as the system on a chip of module progresses, the possibility of the small size is present According to this, Bluetooth module transmits the medical information, which is input from the outside among the operations that use the Bluetooth to the Bluetooth module that is connected the host PC. And the system that the host PC transmits the medical information from the connected Bluetooth module to the Internet has once embedded. this study let the host PC embedded in advance of the existing system and transmit the medical information by the addition of the Tcp/Ip protocol stark under all embedded environments to internet.

  • PDF

Velocity Distribution Measurements in Mach 2.0 Supersonic Nozzle using Two-Color PIV Method (Two Color PIV 기법을 이용한 마하 2.0 초음속 노즐의 속도분포 측정)

  • 안규복;임성규;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • A two-color particle image velocimetry (PIV) has been developed for measuring two dimensional velocity flowfields and applied to a Mach 2.0 supersonic nozzle. This technique is similar to a single-color PIV technique except that two different color laser beams are used to solve the directional ambiguity problem. A green-color laser sheet (532 nm: 2nd harmonic beam of YAG laser) and a red-color laser sheet (619 nm: output beam from YAG pumped Dye laser using Rhodamine 640) are employed to illuminate the seeded particles. A high resolution (3060${\times}$2036) digital color CCD camera is used to record the particle positions. This system eliminates the photographic-film processing time and subsequent digitization time as well as the complexities associated with conventional image shifting techniques for solving directional ambiguity problem. The two-color PIV also has the advantage that velocity distributions in high speed flowfields can be measured simply and accurately by varying the time interval between two different laser beams due to its high signal-to-noise ratio and thereby less requirement of panicle pair numbers for a velocity vector in one interrogation spot. The velocity distribution in the Mach 2.0 supersonic nozzle has been measured and the over-expanded shock cell structure can be predicted by the strain rate field. These results are compared and analyzed with the schlieren photograph for the velocity distributions and shock location.

  • PDF

Image quality and usefulness evaluaton of 3D-CBCT and Gated-CBCT according to baseline changes for SBRT of Lung Cancer (폐암 환자의 정위체부방사선치료 시 기준선 변화에 따른 3D-CBCT(Cone Beam Computed-Tomography)와 Gated-CBCT의 영상 품질 및 유용성 평가)

  • Han Kuk Hee;Shin Chung Hun;Lee Chung Hwan;Yoo Soon Mi;Park Ja Ram;Kim Jin Su;Yun In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.41-51
    • /
    • 2023
  • Purpose: This study compares and analyzes the image quality of 3D-CBCT(Cone Beam Computed-Tomography) and Gated CBCT according to baseline changes during SBRT(Stereotactic Body RadioTherapy) in lung cancer patients to find a useful CBCT method for correcting movement due to breathing Materials and methods : Insert a solid tumor material with a diameter of 3 cm into the QUASARTM phantom. 4-Dimentional Computed-Tomography(4DCT) images were taken with a speed of the phantom at period 3 sec and a maximum amplitude of 20 mm. Using the contouring menu of the computerized treatment planning system EclipseTM Gross Tumor Volume was outlined on solid tumor material. Set-up the same as when acquiring a 4DCT image using Truebeam STxTM, breathing patterns with baseline changes of 1 mm, 3 mm, and 5 mm were input into the phantom to obtain 3D-CBCT (Spotlight, Full) and Gated-CBCT (Spotlight, Full) images five times repeatedly. The acquired images were compared with the Signal-to-Noise Ratio(SNR), Contrast-to-Noise Ratio(CNR), Tumor Volume Length, and Motion Blurring Ratio(MBR) based on the 4DCT image. Results: The average Signal-to-Noise Ratio, Contrast-to-Noise Ratio, Tumor Volume Length and Motion Blurring Ratio of Spotlight Gated CBCT images were 13.30±0.10%, 7.78±0.16%, 3.55±0.17%, 1.18±0.06%. As a result, Spotlight Gated-CBCT images according to baseline change showed better values than Spotligtht 3D-CBCT images. Also, the average Signal-to-Noise Ratio, Contrast-to-Noise Ratio, Tumor Volume Length and Motion Blurring Ratio of Full Gated CBCT images were 12.80±0.11%, 7.60±0.11%, 3.54±0.16%, 1.18±0.05%. As a result Full GatedCBCT images according to baseline change showed better values than Full 3D-CBCT images. Conclusion : Compared to 3D-CBCT images, Gated-CBCT images had better image quality according to the baseline change, and the effect of Motion Blurring Artifacts caused by breathing was small. Therefore, it is considered useful to image guided using Gated-CBCT when a baseline change occurs due to difficulty in regular breathing during SBRT that exposes high doses in a short period of time

  • PDF

A 10b 200MS/s 75.6mW $0.76mm^2$ 65nm CMOS Pipeline ADC for HDTV Applications (HDTV 응용을 위한 10비트 200MS/s 75.6mW $0.76mm^2$ 65nm CMOS 파이프라인 A/D 변환기)

  • Park, Beom-Soo;Kim, Young-Ju;Park, Seung-Jae;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.60-68
    • /
    • 2009
  • This work proposes a 10b 200MS/s 65nm CMOS ADC for high-definition video systems such as HDTV requiring high resolution and fast operating speed simultaneously. The proposed ADC employs a four-step pipeline architecture to minimize power consumption and chip area. The input SHA based on four capacitors reduces the output signal range from $1.4V_{p-p}$ to $1.0V_{p-p}$ considering high input signal levels at a low supply voltage of 1.2V. The proposed three-stage amplifiers in the input SHA and MDAC1 overcome the low output resistance problem as commonly observed in a 65nm CMOS process. The proposed multipath frequency-compensation technique enables the conventional RNMC based three-stage amplifiers to achieve a stable operation at a high sampling rate of 200MS/s. The conventional switched-bias power-reduction technique in the sub-ranging flash ADCs further reduces power consumption while the reference generator integrated on chip with optional off-chip reference voltages allows versatile system a locations. The prototype ADC in a 65nm CMOS technology demonstrates a measured DNL and INL within 0.19LSB and 0.61LSB, respectively. The ADC shows a maximum SNDR of 54.BdB and 52.4dB and a maximum SFDR of 72.9dB and 64.8dB at 150MS/S and 200MS/s, respectively. The proposed ADC occupies an active die area of $0.76mm^2$ and consumes 75.6mW at a 1.2V supply voltage.

Study on Strain Measurement of Agricultural Machine Elements Using Microcomputer (Microcomputer를 이용(利用)한 농업기계요소(農業機械要素)의 Strain 측정(測定)에 관(關)한 연구(硏究))

  • Kim, Kee Dae;Kim, Tae Kyun;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.1
    • /
    • pp.90-96
    • /
    • 1981
  • To design more efficient agricultural machinery, the accurately measuring system among many other factors is essential. A light-beam oscillographic recorder is generally used in measuring dynamic strain but it is not compatible with the extremely high speed measuring system such as 1,000 m/s, also is susceptable to damage due to vibration while using the system in field. The recorder used light sensitive paper for strip chart recording. The reading and analysis of data from the strip charts is very cumbersome, errorneous and time consuming. A microcomputer was interfaced with A/D converter, microcomputer program was developed for measuring, system calibration was done and the strain generated from a cantilever beam vibrator was measured. The results are summarized as follows. 1. Microcomputer program was developed to perform strain measuring of agricultural machine elements and could be controled freely the measuring intervals, no. of channels and no. of data. The maximum measuring speed was $62{\mu}s$. 2. Calibration the system was performed with triangle wave generated from a function generator and checked by an oscilloscope. The sampled data were processed using HP 3000 minicomputer of Chungnam National University computer center the graphical results were triangle same as input wave and so the system have been out of phase distorsion and amplitude distorsion. 3. The strain generated from a cantilever beam vibrator which has free vibration period of 0.019 second were measured by the system controlled to have l.0 ms of time interval and its computer output showing vibration curve which is well filted to theoretical value. 4. Using microcomputer on measuring the strain of agricultural machine elements could not only save analyzing time and recording papers but also get excellent adaptation to field experiment, especially in measurement requiring high speed and good precision.

  • PDF

A Comparative Analysis between Photogrammetric and Auto Tracking Total Station Techniques for Determining UAV Positions (무인항공기의 위치 결정을 위한 사진 측량 기법과 오토 트래킹 토탈스테이션 기법의 비교 분석)

  • Kim, Won Jin;Kim, Chang Jae;Cho, Yeon Ju;Kim, Ji Sun;Kim, Hee Jeong;Lee, Dong Hoon;Lee, On Yu;Meng, Ju Pil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.553-562
    • /
    • 2017
  • GPS (Global Positioning System) receiver among various sensors mounted on UAV (Unmanned Aerial Vehicle) helps to perform various functions such as hovering flight and waypoint flight based on GPS signals. GPS receiver can be used in an environment where GPS signals are smoothly received. However, recently, the use of UAV has been diversifying into various fields such as facility monitoring, delivery service and leisure as UAV's application field has been expended. For this reason, GPS signals may be interrupted by UAV's flight in a shadow area where the GPS signal is limited. Multipath can also include various noises in the signal, while flying in dense areas such as high-rise buildings. In this study, we used analytical photogrammetry and auto tracking total station technique for 3D positioning of UAV. The analytical photogrammetry is based on the bundle adjustment using the collinearity equations, which is the geometric principle of the center projection. The auto tracking total station technique is based on the principle of tracking the 360 degree prism target in units of seconds or less. In both techniques, the target used for positioning the UAV is mounted on top of the UAV and there is a geometric separation in the x, y and z directions between the targets. Data were acquired at different speeds of 0.86m/s, 1.5m/s and 2.4m/s to verify the flight speed of the UAV. Accuracy was evaluated by geometric separation of the target. As a result, there was an error from 1mm to 12.9cm in the x and y directions of the UAV flight. In the z direction with relatively small movement, approximately 7cm error occurred regardless of the flight speed.

Development of a Laser-Generated Ultrasonic Inspection System by Using Adaptive Error Correction and Dynamic Stabilizer (적응적 에러 보정과 다이나믹 안정기를 이용한 레이저 유도 초음파 검사 시스템 개발)

  • Park, Seung-Kyu;Baik, Sung-Hoon;Park, Moon-Cheol;Lim, Chang-Hwan;Ra, Sung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.391-399
    • /
    • 2005
  • Laser-generated ultrasonic inspection system is a non-contact scanning inspection device with high spatial resolution and wide bandwidth. The amplitude of laser-generated ultrasound is varied according to the energy of pulse laser and the surface conditions of an object where the CW measuring laser beam is pointing. In this paper, we correct the generating errors by measuring the energy of pulse laser beam and correct the measuring errors by extracting the gain information of laser interferometer at each time. h dynamic stabilizer is developed to stably scan on the surface of an object for an laser-generated ultrasonic inspection system. The developed system generates ultrasound after adaptively finding the maximum gain time of an laser interferometer and processes the signal in real time after digitization with high speed. In this paper, we describe hardware configuration and control algorithm to build a stable laser-generated ultrasonic inspection system. Also, we confirmed through experiments that the proposed correction method for the generating errors and measuring errors is effective to improve the performance of a system.