• 제목/요약/키워드: High-rise Structures

검색결과 746건 처리시간 0.02초

Identifying the hysteretic energy demand and distribution in regular steel frames

  • Akbas, Bulent;Shen, Jay;Temiz, Hakan
    • Steel and Composite Structures
    • /
    • 제6권6호
    • /
    • pp.479-491
    • /
    • 2006
  • Structures in seismic regions are designed to dissipate seismic energy input through inelastic deformations. Structural or component failure occurs when the hysteretic energy demand for a structure or component subject to an earthquake ground motion (EQGM) exceeds its hysteretic energy dissipation capacity. This paper presents a study on identifying the hysteretic energy demand and distribution throughout the height of regular steel moment resisting frames (SMRFs) subject to severe EQGMs. For this purpose, non-linear dynamic time history (NDTH) analyses were carried out on regular low-, medium-, and high-rise steel SMRFs. An ensemble of ninety EQGMs recorded on different soil types was used in the study. The results show that the hysteretic energy demand decreases from the bottom stories to the upper stories and for high-rise structures, most of the hysteretic energy is dissipated by the bottom stories. The decrease is quite significant, especially, for medium- and high-rise structures.

Earthquake Response of Mid-rise to High-rise Buildings with Friction Dampers

  • Kaur, Naveet;Matsagar, V.A.;Nagpal, A.K.
    • International Journal of High-Rise Buildings
    • /
    • 제1권4호
    • /
    • pp.311-332
    • /
    • 2012
  • Earthquake response of mid-rise to high-rise buildings provided with friction dampers is investigated. The steel buildings are modelled as shear-type structures and the investigation involved modelling of the structures of varying heights ranging from five storeys to twenty storeys, in steps of five storeys, subjected to real earthquake ground motions. Three basic types of structures considered in the study are: moment resisting frame (MRF), braced frame (BF), and friction damper frame (FDF). Mathematical modelling of the friction dampers involved simulation of the two distinct phases namely, the stick phase and the slip phase. Dynamic time history analyses are carried out to study the variation of the top floor acceleration, top floor displacement, storey shear, and base-shear. Further, energy plots are obtained to investigate the energy dissipation by the friction dampers. It is seen that substantial earthquake response reduction is achieved with the provision of the friction dampers in the mid-rise and high-rise buildings. The provision of the friction dampers always reduces the base-shear. It is also seen from the fast Fourier transform (FFT) of the top floor acceleration that there is substantial reduction in the peak response; however, the higher frequency content in the response has increased. For the structures considered, the top floor displacements are lesser in the FDF than in the MRF; however, the top floor displacements are marginally larger in the FDF than in the BF.

Environmental Impact Characteristics Analysis of High-rise Structural System Based on Life Cycle Assessment (전과정평가 기법에 기반한 고층구조시스템의 환경영향특성 분석)

  • Kim, Rak-Hyun;Kim, Young-Hwa;Roh, Seung-Jun;Park, Sang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • 제22권4호
    • /
    • pp.71-79
    • /
    • 2022
  • Recently, the construction of tall buildings utilized by high strength-concrete in the whole world is tending to be on the rise. The application of high-rise structural system in buildings results in the excellent cut-down effect in construction materials due to section reduction. Therefore, in order to investigate the CO2 and resource reduction effect for the high-rise structural system, comparisons of GWP and ADP in embodied energy of structural materlais between 4 type of high-rise structural system have been performed. As a result, GWP emission increased in the order of steel structure outrigger system, RC shear wall system, and RC outrigger system. On the other hand, ADP emissions increased in the order of RC shear wall system, RC outrigger system, and steel structure outrigger system.

Analysis of Seismic Response According to Installation Location of Seismic Isolation System Applied to High-Rise Building (고층 건물에 적용한 면진 시스템의 설치 위치에 따른 지진 응답 분석)

  • Kim, Min-Ju;Kim, Dong-Uk;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • 제18권4호
    • /
    • pp.81-88
    • /
    • 2018
  • Seismic isolation systems have typically been used in the form of base seams in mid-rise and low-rise buildings. In the case of high-rise buildings, it is difficult to apply the base isolation. In this study, the seismic response was analyzed by changing the installation position of the seismic isolation device in 3D high - rise model. To do this, we used 30-story and 40-story 3D buildings as example structures. Historic earthquakes such as Mexico (1985), Northridge (1994) and Rome Frieta (1989) were applied as earthquake loads. The installation position of the isolation device was changed from floor to floor to floor. The maximum deformation of the seismic isolation system was analyzed and the maximum interlaminar strain and maximum absolute acceleration were analyzed by comparing the LB model with seismic isolation device and the Fixed model, which is the base model without seismic isolation device. If an isolation device is installed on the lower layer, it is most effective in response reduction, but since the structure may become unstable, it is effective to apply it to an effective high-level part. Therefore, engineers must consider both structural efficiency and safety when designing a mid-level isolation system for high-rise buildings.

Problems in Seismic Design of High-Rise RC Building Structures having Irregularity (비정형 고층 RC 건축물의 내진설계 시 문제점)

  • 이한선;고동우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.125-132
    • /
    • 2003
  • This paper clarifies the problems which structural engineers would have when the high-rise reinforced concrete building structures with vertical and plan irregularities are to be designed against earthquakes. The most important problems appear to be as follows: (1) ambiguity in defining the principal direction of the structure and the dynamic base shear, (2) the methodology how to account for the accidental eccentricity when the modal analysis should be conducted as required for the torsionally irregular structures, and (3) the choice of 100/30 and SRSS methods to take into account the effect of the critical direction of earthquake.

  • PDF

Performance-based Wind-resistant Design for High-rise Structures in Japan

  • Nakai, Masayoshi;Hirakawa, Kiyoaki;Yamanaka, Masayuki;Okuda, Hirofumi;Konishi, Atsuo
    • International Journal of High-Rise Buildings
    • /
    • 제2권3호
    • /
    • pp.271-283
    • /
    • 2013
  • This paper introduces the current status of high-rise building design in Japan, with reference to some recent projects. Firstly, the design approval system and procedures for high-rise buildings and structures in Japan are introduced. Then, performance-based wind-resistant design of a 300 m-high building, Abeno Harukas, is introduced, where building configuration, superstructure systems and various damping devices are sophisticatedly integrated to ensure a higher level of safety and comfort against wind actions. Next, design of a 213 m-high building is introduced with special attention to habitability against the wind-induced horizontal motion. Finally, performance-based wind-resistant design of a 634 m-high tower, Tokyo Sky Tree, is introduced. For this structure, the core column system was adopted to satisfy the strict design requirements due to the severest level of seismic excitations and wind actions.

Displacement Response Properties of Spatial Structures and High-Rise Buildings According to the Change of TMD Mass (TMD 설치 질량 변화에 따른 대공간 구조물과 고층건물의 변위 응답 특성)

  • Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • 제20권3호
    • /
    • pp.107-116
    • /
    • 2020
  • In this paper, the displacement response to seismic loads was analyzed after installing TMD in spatial structures and high-rise buildings. In the case of a spatial structures, since it exhibits complex dynamic behavior under the influence of various vibration modes, it is not possible to effectively control the seismic response by installing only one TMD, unlike ordinary structures. Therefore, after installing eight TMDs in the structure, the correlation between displacement response and mass ratio was examined while changing the mass. The TMD must be designed to have the same frequency as the structure frequency so that the maximum response reduction effect can be exhibited. It can be confirmed that the most important variable is to select the optimal TMD mass in order to install the TMD on the structure and secure excellent control performance against the earthquake load. As a result of analyzing the TMD mass ratio, in the case of high-rise buildings, a mass ratio of 0.4% to 0.6% is preferable. In spatial structures, it is desirable to select a mass ratio of 0.1% to 0.2%. Because this study is based on the theoretical study based on numerical analysis, in order to design a TMD for a real structure, it is necessary to select within a range that does not affect the safety of the structure.

Control Performance Evaluation of Outrigger Damper System of Eccentrically Loaded High-Rise Building (편심하중을 가한 고층건물의 아웃리거 댐퍼 시스템 제어성능평가)

  • Kim, Su-Jin;Kim, Su-Geun;Kang, Ho-Geun;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • 제17권2호
    • /
    • pp.43-51
    • /
    • 2017
  • The demand for skyscrapers is increasing worldwide. Until now, various lateral resistance structures have been used for lateral displacement control of high-rise buildings. An outrigger damper system has been introduced recently to improve lateral dynamic response control performance further. However, a study of outrigger damper system is yet to be sufficiently investigated. In this study, time history analysis was performed to investigate the control performance of an outrigger damper system of high-rise building under eccentric loading. To do this, an actual scale 3-dimensional tall building model with an outrigger damper system was prepared. The control performance of the outrigger damper system was evaluated by varying stiffness and damping values. On the top floor torsional angle response to the earthquake load, was greatly affected by damping value. And the displacement response was affected greatly by the stiffness value and damping value of damper system. In conclusion, it is necessary to select the proper damping and stiffness values of the outrigger damper system.

Displacement Response Analysis According to the Outrigger System Arrangement of the Twisted High-Rise Building (아웃리거 시스템 적용에 따른 Twisted 초고층 건물의 변위응답분석)

  • Hwang, Il-Geun;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • 제24권2호
    • /
    • pp.75-82
    • /
    • 2024
  • Since atypical high-rise buildings are vulnerable to gravity loads and seismic loads, various structural systems must be applied to ensure the stability of the structure. In this study, the authors selected a 60-story twisted-shaped structure among atypical high-rise structures as an analytical model to investigate its structural behavior concerning the outrigger system. The structural analyses were performed varying the number of installed layers and the arrangement of the outrigger system, as well as the placement of the mega column, as design variables. The analysis revealed that the most effective position for the outrigger was 0.455H from the top layer, consistent with previous studies. Additionally, connecting outriggers and mega columns significantly reduced the displacement response of the model. From an economic standpoint, it is deemed efficient to connect and install outriggers and mega columns at the structure's ends.

Performance Evaluation of Vibration Control of High-rise Buildings Connected by Sky-Bridge (스카이브릿지로 연결된 고층건물의 진동제어 성능평가)

  • Kim, Hyun-Su;Yang, Ah-Ram;Lee, Dong-Guen;Ahn, Sang-Kyung;Oh, Jung-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • 제8권4호
    • /
    • pp.91-100
    • /
    • 2008
  • In this study, the vibration control performance of high-rise building structures connected by a sky-bridge has been investigated. The philosophy of vibration control using sky-bridges is to allow structures with different dynamic characteristics to exert control forces upon one another through sky-bridges to reduce the overall responses of the system. The the high-rise building structure connected by sky-bridge with 49 and 42 stories was used in this study to investigate the displacement, acceleration, reaction of bearings and stress of sky-bridge by analytical methods. To this end, historical earthquakes, an artificial earthquake and wind force time histories obtained from wind tunnel tests were used. Based on the analytial results, the use of sky-bridge can be effective in reducing the structural responses of high-rise buildings against wind and seismic loads.

  • PDF