• 제목/요약/키워드: High-resolution data

검색결과 2,586건 처리시간 0.03초

지형자료 해상도에 따른 대기 유동장 변화에 관한 수치 연구 (Numerical Study on Atmospheric Flow Variation Associated With the Resolution of Topography)

  • 이순환;김선희;류찬수
    • 한국환경과학회지
    • /
    • 제15권12호
    • /
    • pp.1141-1154
    • /
    • 2006
  • Orographic effect is one of the important factors to induce Local circulations and to make atmospheric turbulence, so it is necessary to use the exact topographic data for prediction of local circulations. In order to clarify the sensitivity of the spatial resolution of topography data, numerical simulations using several topography data with different spatial resolution are carried out under stable and unstable synoptic conditions. The results are as follows: 1) Influence of topographic data resolution on local circulation tends to be stronger at simulation with fine grid than that with coarse grid. 2) The hight of mountains in numerical model become mote reasonable with high resolution topographic data, so the orographic effect is also emphasized and clarified when the topographic data resolution is higher. 2) The higher the topographic resolution is, the stronger the mountain effect is. When used topographic data resolution become fine, topography in numerical model becomes closer to real topography. 3) The topographic effect tends to be stronger when atmospheric stability is strong stable. 4) Although spatial resolution of topographic data is not fundamental factor for dramatic improvement of weather prediction accuracy, some influence on small scale circulation can be recognized, especially in fluid dynamic simulation.

신경 인터페이스 기반 초감각 디바이스 기술 동향 (Neural Interface-based Hyper Sensory Device Technology Trend)

  • 김혜진;변춘원;김성은;이정익
    • 전자통신동향분석
    • /
    • 제33권6호
    • /
    • pp.69-80
    • /
    • 2018
  • Sensory devices have been developed to help people with disabled or weakened sensory functions. Such devices play a role in collecting and transferring data for the five senses (vision, sound, smell, taste, and tactility) and also stimulating nerves. To provide brain or prosthesis devices with more sophisticated senses, hyper sensory devices with a high resolution comparable to or even better than the human system based on individual neuron cells are essential. As for data collecting components, technologies for sensors with higher resolution and sensitivity, and the conversion of algorithms from physical sensing data to human neuron signals, are needed. Converted data can be transferred to neurons that are responsible for human senses through communication with high security, and neural interfaces with high resolution. When communication deals with human data, security is the most important consideration, and intra-body communication is expected to be a candidate with high priority. To generate sophisticated human senses by modulating neurons, neural interfaces should modulate individual neurons, and therefore a high resolution compared to human neurons (~ several tens of um) with a large area covering neuron cells for human senses (~ several tens of mm) should be developed. The technological challenges for developing sensory devices with human and even beyond-human capabilities have been tackled by various research groups, the details of which are described in this paper.

고해상도 인공위성데이터로부터 지상좌표 결정을 위한 궤도모델링 및 RFM기법 적용 (The Application of Orbital Modeling and Rational Function Model for Ground Coordinate from High Resolution Satellite Data)

  • 서두천;양지연;이동한;임효숙
    • 항공우주기술
    • /
    • 제7권2호
    • /
    • pp.187-195
    • /
    • 2008
  • 고해상도의 인공위성 데이터로부터 지상좌표를 해석하는 센서모델링 기술은 위성영상자료의 활용 확대 및 신뢰성 확보에 가장 중요한 연구부분으로서 이에 대한 연구과 증가되고 있다. 본 연구는 이러한 요구조건을 기본을 하여, 고해상도 인공위성에서 기본적으로 탑재되어 있는 GPS, Star-tracker, Gyro 등의 센서로부터 측정된 위성의 위치, 속도, 자세 및 시간 정보를 이용하여 위성자료로부터 지상좌표를 해석하는 direct sensor model (DSM)과 위성의 궤도 정보를 얻을 수 없는 경우나 궤도에 대한 정보가 불확실하여 물리적 센서모델로는 지형보정을 수행할 수 없는 경우에 사용될 수 있는 rational function model (RFM)의 적용하여 지상좌표를 해석하는 방법에 대해 살펴보고자 한다.

  • PDF

Advancing behavioral understanding and damage evaluation of concrete members using high-resolution digital image correlation data

  • Sokoli, Drit;Shekarchi, William;Buenrostro, Eliud;Ghannoum, Wassim M.
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.609-626
    • /
    • 2014
  • The capabilities of a high-resolution Digital Image Correlation (DIC) system are presented within the context of deformation measurements of full-scale concrete columns tested under reversed cyclic loading. The system was developed to have very high-resolution such that material strains on the order of the cracking stain of concrete could be measured on the surface of full-scale structural members. The high-resolution DIC system allows the measurement of a wide range of deformations and strains that could only be inferred or assumed previously. The DIC system is able to resolve the full profiles of member curvatures, rotations, plasticity spread, shear deformations, and bar-slip induced rotations. The system allows for automatic and objective measurement of crack widths and other damage indices that are indicative of cumulated damage and required repair time and cost. DIC damage measures contrast prevailing proxy damage indices based on member force-deformation data and subjective damage measures obtained using visual inspection. Data derived from high-resolution DIC systems is shown to be of great use in advancing the state of behavioral knowledge, calibrating behavioral and analytical models, and improving simulation accuracy.

공간해상도에 따른 위성 영상레이더 위상간섭기법 긴밀도 분석 (Interferometric coherence analysis using space-borne synthetic aperture radar with respect to spatial resolution)

  • 홍상훈
    • 대한원격탐사학회지
    • /
    • 제29권4호
    • /
    • pp.389-397
    • /
    • 2013
  • 최근 고해상도 영상레이더를 탑재한 위성이 성공적으로 발사, 운용되고 있다. 이들 위성에서 획득된 자료를 이용한 위상간섭기법의 활용은 다양한 지구과학적 분야에서 보다 자세한 정보를 제공하고 있다. 위상간섭기법 적용에서 긴밀도는 영상레이더 자료로부터 생성된 위상간섭도 질을 평가하는 매우 중요한 요소이다. 본 연구에서는 미국 서부 텍사스에 위치한 엘파소 지역에 대한 고해상도 X-밴드 TerraSAR-X(TSX), L-밴드 ALOS PALSAR와 중해상도 C-밴드 Envisat ASAR 위성 영상레이더 자료의 긴밀도 특성을 분석 평가하고자 한다. 짧은 시간기선거리(temporal baseline) 조건에서 X-밴드 TSX 자료의 긴밀도는 0.3~0.6으로 L-밴드 ALOS PALSAR 자료와 유사한 정도의 높은 긴밀도를 나타내었다. 이 수치는 C-밴드 Envisat ASAR 자료에 비해서는 상당히 높은 것이며 영상레이더 신호의 파장이 길수록 위상간섭도의 긴밀도 유지에 있어 보다 유리하다는 일반적인 산란 이론을 고려해 볼 때 의미있는 결과라 할 수 있다. TSX 자료가 높은 긴밀도를 갖는 이유는 안정적인 산란 특성을 잘 반영할 수 있는 높은 공간 해상력이 하나의 원인일 것으로 추정된다. 하지만 11~33일 정도의 짧은 시간기선거리에서는 비교적 높은 긴밀도를 유지하는 반면에 시간기선거리가 다소 길어질 경우 긴밀도가 크게 저하된다. 본 연구 결과를 통해 긴밀도가 시간기선거리와 매우 밀접한 관계에 있음을 확인할 수 있었다.

고해상도 3D 데이터 생성 기술 분석 및 연구 동향 (Trends in High-Resolution 3D Data Generation Technologies)

  • 김현주;최중용;오아름;지형근
    • 전자통신동향분석
    • /
    • 제37권3호
    • /
    • pp.64-73
    • /
    • 2022
  • As the COVID-19 pandemic has decreased face-to-face communication in everyday life, our interest in cultural communication via virtual world has grown significantly. In particular, the demand for applications that use three-dimensional (3D) data generation technology such as virtual reality, augmented reality, virtual performances, and realistic content is rapidly increasing in the entertainment and gaming industries. Additionally, improved computing capacity has increased the demand for high-resolution data. This study investigates the trends in 3D scanning and photogrammetry technologies that can support high-quality 3D data generation and introduces the high-resolution 3D data generation technology developed and reported in ETRI.

Change Detection of Buildings Using High Resolution Remotely Sensed Data

  • Zeng, Yu;Zhang, Jixian;Wang, Guangliang
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.530-535
    • /
    • 2002
  • An approach for quickly updating GIS building data using high resolution remotely sensed data is proposed in this paper. High resolution remotely sensed data could be aerial photographs, satellite images and airborne laser scanning data. Data from different types of sensors are integrated in building extraction. Based on the extracted buildings and the outdated GIS database, the change-detection-template can be automatically created. Then, GIS building data can be fast updated by semiautomatically processing the change-detection-temp late. It is demonstrated that this approach is quick, effective and applicable.

  • PDF

Assessment of Drought on the Goseong-Sokcho Forest Fire in 2019 using Multi-year High-Resolution Synthetic Precipitation Data

  • Sim, Jihan;Oh, Jaiho
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.379-379
    • /
    • 2020
  • The influence of drought has increased due to global warming. In addition, forest fires have occurred more frequently due to droughts and resulted in property losses and casualty. In this study, the effects of drought on Goseong-Sokcho Forest Fire in 2019 were analyzed using high-resolution synthetic precipitation data. In order to determine the severity of drought, the average, 20%tile and 80%ile values were calculated using the synthetic precipitation data of the past 30 years and compared with the current climatology. We have investigated the multi-year accumulated precipitation data to determine the persistence of drought. In Goseong-Sokcho forest fire case, the two-year cumulative synthetic precipitation data shows a similar value to the climate, but the three-year cumulative synthetic precipitation data was close to the 20%ile lines of the climate value. It may expose that the shortage of precipitation in 2017 had persisted until 2019, despite abundant precipitation during the summer in 2018. Therefore, Goseong-Sokcho forest fire might be spread more rapidly by drought which has been persisted since 2017.

  • PDF

Region Growing Segmentation with Directional Features

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.731-740
    • /
    • 2010
  • A region merging technique is suggested in this paper for the segmentation of high-spatial resolution imagery. It employs a region growing scheme based on the region adjacency graph (RAG). The proposed algorithm uses directional neighbor-line average feature vectors to improve the quality of segmentation. The feature vector consists of 9 components which includes an observation and 8 directional averages. Each directional average is the average of the pixel values along the neighbor line for a given neighbor line length at each direction. The merging coefficients of the segmentation process use a part of the feature components according to a given merging coefficient order. This study performed the extensive experiments using simulation data and a real high-spatial resolution data of IKONOS. The experimental results show that the new approach proposed in this study is quite effective to provide segments of high quality for the object-based analysis of high-spatial resolution images.

Matching Performance Analysis of Upsampled Satellite Image and GCP Chip for Establishing Automatic Precision Sensor Orientation for High-Resolution Satellite Images

  • Hyeon-Gyeong Choi;Sung-Joo Yoon;Sunghyeon Kim;Taejung Kim
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.103-114
    • /
    • 2024
  • The escalating demands for high-resolution satellite imagery necessitate the dissemination of geospatial data with superior accuracy.Achieving precise positioning is imperative for mitigating geometric distortions inherent in high-resolution satellite imagery. However, maintaining sub-pixel level accuracy poses significant challenges within the current technological landscape. This research introduces an approach wherein upsampling is employed on both the satellite image and ground control points (GCPs) chip, facilitating the establishment of a high-resolution satellite image precision sensor orientation. The ensuing analysis entails a comprehensive comparison of matching performance. To evaluate the proposed methodology, the Compact Advanced Satellite 500-1 (CAS500-1), boasting a resolution of 0.5 m, serves as the high-resolution satellite image. Correspondingly, GCP chips with resolutions of 0.25 m and 0.5 m are utilized for the South Korean and North Korean regions, respectively. Results from the experiment reveal that concurrent upsampling of satellite imagery and GCP chips enhances matching performance by up to 50% in comparison to the original resolution. Furthermore, the position error only improved with 2x upsampling. However,with 3x upsampling, the position error tended to increase. This study affirms that meticulous upsampling of high-resolution satellite imagery and GCP chips can yield sub-pixel-level positioning accuracy, thereby advancing the state-of-the-art in the field.