DOI QR코드

DOI QR Code

Interferometric coherence analysis using space-borne synthetic aperture radar with respect to spatial resolution

공간해상도에 따른 위성 영상레이더 위상간섭기법 긴밀도 분석

  • Hong, Sang-Hoon (Satellite Information Research Center, Korea Aerospace Research Institute) ;
  • Wdowinski, Shimon (Rosenstiel School of Marine and Atmospheric Science, University of Miami)
  • 홍상훈 (한국항공우주연구원 위성정보연구센터) ;
  • Received : 2013.08.07
  • Accepted : 2013.08.21
  • Published : 2013.08.30

Abstract

Recently high spatial resolution space-borne Synthetic Aperture Radar (SAR) systems have launched and have been operated successfully. Interferometric SAR (InSAR) processing with the space-based high resolution observations acquired by these systems can provide more detail information for various geodetic applications. Coherence is regarded as a critical parameter in the evaluating the quality of an InSAR pair. In this study, we evaluate the coherence characteristics of high-resolution data acquired by TerraSAR-X (X-band) and ALOS PALSAR (L-band) and intermediate-resolution data acquired by Envisat ASAR (C-band) over western Texas, U.S.A. Our coherence analysis reveals that the high-resolution X-band TSX (3.1 cm) data has a high coherence level (0.3-0.6), similar to that of the L-band ALOS PALSAR data (23.5 cm) in short temporal baselines. Further more, the TSX coherence values are significantly higher than those of the C-band (5.6 cm) Envisat ASAR data. The higher coherence of the TSX dataset is a surprising result, because common scattering theories suggest that the longer wavelength SAR data maintain better coherence. In vegetated areas the shorter wavelength radar pulse interacts mostly with upper sections of the vegetation and, hence, does not provide good correlation over time in InSAR pairs. Thus, we suggest that the higher coherence values of the TSX data reflect the data's high-resolution, in which stable and coherent scatters are better maintained. Although, however, the TSX data show a very good coherence with short temporal baseline (11-33 days), the coherences are significantly degraded as the temporal baselines are increased. This result confirms previous studies showing that the coherence has a strong dependency on the temporal baseline.

최근 고해상도 영상레이더를 탑재한 위성이 성공적으로 발사, 운용되고 있다. 이들 위성에서 획득된 자료를 이용한 위상간섭기법의 활용은 다양한 지구과학적 분야에서 보다 자세한 정보를 제공하고 있다. 위상간섭기법 적용에서 긴밀도는 영상레이더 자료로부터 생성된 위상간섭도 질을 평가하는 매우 중요한 요소이다. 본 연구에서는 미국 서부 텍사스에 위치한 엘파소 지역에 대한 고해상도 X-밴드 TerraSAR-X(TSX), L-밴드 ALOS PALSAR와 중해상도 C-밴드 Envisat ASAR 위성 영상레이더 자료의 긴밀도 특성을 분석 평가하고자 한다. 짧은 시간기선거리(temporal baseline) 조건에서 X-밴드 TSX 자료의 긴밀도는 0.3~0.6으로 L-밴드 ALOS PALSAR 자료와 유사한 정도의 높은 긴밀도를 나타내었다. 이 수치는 C-밴드 Envisat ASAR 자료에 비해서는 상당히 높은 것이며 영상레이더 신호의 파장이 길수록 위상간섭도의 긴밀도 유지에 있어 보다 유리하다는 일반적인 산란 이론을 고려해 볼 때 의미있는 결과라 할 수 있다. TSX 자료가 높은 긴밀도를 갖는 이유는 안정적인 산란 특성을 잘 반영할 수 있는 높은 공간 해상력이 하나의 원인일 것으로 추정된다. 하지만 11~33일 정도의 짧은 시간기선거리에서는 비교적 높은 긴밀도를 유지하는 반면에 시간기선거리가 다소 길어질 경우 긴밀도가 크게 저하된다. 본 연구 결과를 통해 긴밀도가 시간기선거리와 매우 밀접한 관계에 있음을 확인할 수 있었다.

Keywords

References

  1. Buckley, S.M., P.A. Rossen, and P. Persaud, 2000. ROI_PAC Documentation-Repeat Orbit Interferometry Package.
  2. Cho, M.J., L. Zhang, and C.W. Lee, 2013. Monitoring of Volcanic Activity of Augustine Volcano, Alaska Using TCPInSAR and SBAS Timeseries Techniques for Measuring Surface Deformation, Korean Journal of Remote Sensing, 29(1): 21-34 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.1.3
  3. Gabriel, A.K., R.M. Goldstein, and H.A. Zebker, 1989. Mapping small elevation changes over large areas: Differential radar interferometry, Journal of Geophysical Research, 94: 855-856. https://doi.org/10.1029/JC094iC01p00855
  4. Graham, L.C., 1974. Synthetic Interferometer Radar for Topographic Mapping, Proceedings of IEEE, 62(6): 763-768. https://doi.org/10.1109/PROC.1974.9516
  5. Han, H.S., and H.Y. Lee, 2011. Analysis of Surface Displacement of Glaciers and Sea Ice Around Canisteo Peninsula, West Antarctica, by Using 4-pass DInSAR Technique, Korean Journal of Remote Sensing, 27(5): 535-542 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2011.27.5.535
  6. Hanssen, R.F., 2001. Radar Interferometry: Data interpretation and error analysis, Kluwer Academic Publishers.
  7. Hong, S.H., S. Wdowinski, and S.W. Kim, 2010. Evaluation of TerraSAR-X observations for wetland InSAR application, IEEE Transactions on Geoscience and Remote Sensing, 48: 864-873. https://doi.org/10.1109/TGRS.2009.2026895
  8. Jordan, R.L., E.R. Caro, Y. Kim, M. Kobrick, Y. Shen, F.V. Stuhr, and M.U. Werner, 1996. Shuttle radar topography mapper (SRTM), Proc. SPIE 2958, Microwave Sensing and Synthetic Aperture Radar: 412-422.
  9. Papoulis, A., 1991. Probability, Random variables, and stochastic processes, McGraw-Hill series in Electirical Engineering, McGraw-Hill, New York.
  10. Park, J.W., J.H. Choi, Y.K. Lee, and J.S. Won, 2012. Intertidal DEM Generation Using Satellite Radar Interferometry, Korean Journal of Remote Sensing, 28(1): 121-128 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.1.121
  11. Rogers, A.E.E. and R.P. Ingalls, 1969. Venus: Mapping the surface reflectivity by radar interferometry, Science, 165: 797-799. https://doi.org/10.1126/science.165.3895.797
  12. Zebker, H.A. and J. Villasenor, 1992. Decorrelation in interferometric radar echoes, IEEE Transactions on Geoscience and Remote Sensing, 30(5): 950-959. https://doi.org/10.1109/36.175330
  13. Zebker, H.A., C.L. Werner, P.A. Rogen and S. Hensley, 1994. Accuracy of topographic maps derived from ERS-1 interferometric radar, IEEE Transactions on Geoscience and Remote Sensing, 32: 823-836. https://doi.org/10.1109/36.298010

Cited by

  1. Analysis of Annual Variability of Landfast Sea Ice near Jangbogo Antarctic Station Using InSAR Coherence Images vol.31, pp.6, 2015, https://doi.org/10.7780/kjrs.2015.31.6.1
  2. Ground subsidence observation of solid waste landfill park using multi-temporal radar interferometry pp.2161-6779, 2019, https://doi.org/10.1080/12265934.2018.1468275
  3. 다중시기 위성 레이더 영상을 활용한 변화탐지 기술 리뷰 vol.35, pp.5, 2013, https://doi.org/10.7780/kjrs.2019.35.5.1.10
  4. 인공위성 영상레이더를 이용한 멕시코시티 시계열 지반침하 관측 vol.37, pp.6, 2013, https://doi.org/10.7780/kjrs.2021.37.6.1.14