• Title/Summary/Keyword: High-resolution Satellite Imagery

Search Result 335, Processing Time 0.028 seconds

Classification of Forest Type Using High Resolution Imagery of Satellite IKONOS (고해상도 IKONOS 위성영상을 이용한 임상분류)

  • 정기현;이우균;이준학;김권혁;이승호
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.275-284
    • /
    • 2001
  • This study was carried out to evaluate high resolution satellite imagery of IKONOS for classifying the land cover, especially forest type. The IKONOS imagery of 11km$\times$11km size was taken on April 24, 2000 in Bong-pyoung Myun Pyungchang-Gun, Kangwon Province. Land cover classes were water, coniferous evergreen, Larix leptolepis, broad-leaved tree, bare land, farm land, grassland, sandy soil and asphalted area. Supervised classification method with algorithm of maximum likelihood was applied for classification. The terrestrial survey was also carried out to collect the reference data in this area. The accuracy of the classification was analyzed with the items of overall accuracy, producer's accuracy, user's accuracy and k for test area through the error matrix. In the accuracy analysis of the test area, overall accuracy was 94.3%, producer's accuracy was 77.0-99.9%, user's accuracy was 71.9-100% and k and 0.93. Classes of bare land, sandy soil and farm land were less clear than other classes, whereas classification result of IKONOS in forest area showed higher performance than that of other resolution(5-30m) satellite data.

DESIGN AND IMPLEMENTATION OF 3D TERRAIN RENDERING SYSTEM ON MOBILE ENVIRONMENT USING HIGH RESOLUTION SATELLITE IMAGERY

  • Kim, Seung-Yub;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.417-420
    • /
    • 2006
  • In these days, mobile application dealing with information contents on mobile or handheld devices such as mobile communicator, PDA or WAP device face the most important industrial needs. The motivation of this study is the design and implementation of mobile application using high resolution satellite imagery, large-sized image data set. Although major advantages of mobile devices are portability and mobility to users, limited system resources such as small-sized memory, slow CPU, low power and small screen size are the main obstacles to developers who should handle a large volume of geo-based 3D model. Related to this, the previous works have been concentrated on GIS-based location awareness services on mobile; however, the mobile 3D terrain model, which aims at this study, with the source data of DEM (Digital Elevation Model) and high resolution satellite imagery is not considered yet, in the other mobile systems. The main functions of 3D graphic processing or pixel pipeline in this prototype are implemented with OpenGL|ES (Embedded System) standard API (Application Programming Interface) released by Khronos group. In the developing stage, experiments to investigate optimal operation environment and good performance are carried out: TIN-based vertex generation with regular elevation data, image tiling, and image-vertex texturing, text processing of Unicode type and ASCII type.

  • PDF

Development of Feature-based Classification Software for High Resolution Satellite Imagery (고해상도 위성영상의 분류를 위한 형상 기반 분류 소프트웨어 개발)

  • Jeong, Soo;Lee, Chang-No
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.53-59
    • /
    • 2004
  • In this paper, we investigated a method for feature-based classification to develop a software which is suitable for the classification of high resolution satellite imagery. We developed algorithms for image segmentation and fuzzy-based classification required for feature-based classification and designed user interfaces to support interaction with user, considering various elements required for the feature-based classification. Evaluation of the software was accomplished using real image. Classification results were compared and analysed with eCognition software which is unique commercial software for feature-based classification. The classification results from both softwares showed essentially same results and the developed software showed better result in the processing speed.

  • PDF

Downscaling of MODIS Land Surface Temperature to LANDSAT Scale Using Multi-layer Perceptron

  • Choe, Yu-Jeong;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.313-318
    • /
    • 2017
  • Land surface temperature is essential for monitoring abnormal climate phenomena such as UHI (Urban Heat Islands), and for modeling weather patterns. However, the quality of surface temperature obtained from the optical space imagery is affected by many factors such as, revisit period of the satellite, instance of capture, spatial resolution, and cloud coverage. Landsat 8 imagery, often used to obtain surface temperatures, has a high resolution of 30 meters (100 meters rearranged to 30 meters) and a revisit frequency of 16 days. On the contrary, MODIS imagery can be acquired daily with a spatial resolution of about 1 kilometer. Many past attempts have been made using both Landsat and MODIS imagery to complement each other to produce an imagery of improved temporal and spatial resolution. This paper applied machine learning methods and performed downscaling which can obtain daily based land surface temperature imagery of 30 meters.

Assessment of Possibility for Unaccessible Areas Positioning Using Ortho Imagery (정사영상을 이용한 비접근지역의 위치결정 가능성 평가)

  • Kang Joon-Mook;Lee Yong-Woong;Jo Hyeon-Wook
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.287-291
    • /
    • 2006
  • Currently application of high-resolution satellite imagery is expanding with development of high tech optical and space aviation technology. Although using 3 dimensional modeling technology in order to attain accurate terrain information using existing ground control points is the most dependable reference data, such means are unapplicable for certain area because of it's limited access. In this study, we have researched into ways to utilizing high resolution satellite images from IKONOS and Quickbird, and sub-meter class satellites images that will be utilized In the future such as Arirang images and PLEIADES images for unaccessible areas. For that purpose we have created accuracy verification and GCP files for existing ortho-imagery and digital elevation model. The results showed that accuracy of ortho-Imagery and digital elevation model was RMSE X:3.043m, Y:2.921m, Z:6.139m. Also, after ortho-rectifying IKONOS images using ground control points extracted from ortho imagery and digital elevation model the accuracy of the imagery was RMSE X:3.243m, Y:2.067m, Z:1.872m.

  • PDF

EXTRACTING BASE DATA FOR FLOOD ANALYSIS USING HIGH RESOLUTION SATELLITE IMAGERY

  • Sohn, Hong-Gyoo;Kim, Jin-Woo;Lee, Jung-Bin;Song, Yeong-Sun
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.426-429
    • /
    • 2006
  • Flood caused by Typhoon and severe rain during summer is the most destructive natural disasters in Korea. Almost every year flood has resulted in a big lost of national infrastructure and loss of civilian lives. It usually takes time and great efforts to estimate the flood-related damages. Government also has pursued proper standard and tool for using state-of-art technologies. High resolution satellite imagery is one of the most promising sources of ground truth information since it provides detailed and current ground information such as building, road, and bare ground. Once high resolution imagery is utilized, it can greatly reduce the amount of field work and cost for flood related damage assessment. The classification of high resolution image is pre-required step to be utilized for the damage assessment. The classified image combined with additional data such as DEM and DSM can help to estimate the flooded areas per each classified land use. This paper applied object-oriented classification scheme to interpret an image not based in a single pixel but in meaningful image objects and their mutual relations. When comparing it with other classification algorithms, object-oriented classification was very effective and accurate. In this paper, IKONOS image is used, but similar level of high resolution Korean KOMPSAT series can be investigated once they are available.

  • PDF

Performance Study of Satellite Image Processing on Graphics Processors Unit Using CUDA

  • Jeong, In-Kyu;Hong, Min-Gee;Hahn, Kwang-Soo;Choi, Joonsoo;Kim, Choen
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.683-691
    • /
    • 2012
  • High resolution satellite images are now widely used for a variety of mapping applications including photogrammetry, GIS data acquisition and visualization. As the spectral and spatial data size of satellite images increases, a greater processing power is needed to process the images. The solution of these problems is parallel systems. Parallel processing techniques have been developed for improving the performance of image processing along with the development of the computational power. However, conventional CPU-based parallel computing is often not good enough for the demand for computational speed to process the images. The GPU is a good candidate to achieve this goal. Recently GPUs are used in the field of highly complex processing including many loop operations such as mathematical transforms, ray tracing. In this study we proposed a technique for parallel processing of high resolution satellite images using GPU. We implemented a spectral radiometric processing algorithm on Landsat-7 ETM+ imagery using CUDA, a parallel computing architecture developed by NVIDIA for GPU. Also performance of the algorithm on GPU and CPU is compared.

Image Fusion for Improving Classification

  • Lee, Dong-Cheon;Kim, Jeong-Woo;Kwon, Jay-Hyoun;Kim, Chung;Park, Ki-Surk
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1464-1466
    • /
    • 2003
  • classification of the satellite images provides information about land cover and/or land use. Quality of the classification result depends mainly on the spatial and spectral resolutions of the images. In this study, image fusion in terms of resolution merging, and band integration with multi-source of the satellite images; Landsat ETM+ and Ikonos were carried out to improve classification. Resolution merging and band integration could generate imagery of high resolution with more spectral bands. Precise image co-registration is required to remove geometric distortion between different sources of images. Combination of unsupervised and supervised classification of the fused imagery was implemented to improve classification. 3D display of the results was possible by combining DEM with the classification result so that interpretability could be improved.

  • PDF

Support Vector Machine Classification Using Training Sets of Small Mixed Pixels: An Appropriateness Assessment of IKONOS Imagery

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.507-515
    • /
    • 2008
  • Many studies have generally used a large number of pure pixels as an approach to training set design. The training set are used, however, varies between classifiers. In the recent research, it was reported that small mixed pixels between classes are actually more useful than larger pure pixels of each class in Support Vector Machine (SVM) classification. We evaluated a usability of small mixed pixels as a training set for the classification of high-resolution satellite imagery. We presented an advanced approach to obtain a mixed pixel readily, and evaluated the appropriateness with the land cover classification from IKONOS satellite imagery. The results showed that the accuracy of the classification based on small mixed pixels is nearly identical to the accuracy of the classification based on large pure pixels. However, it also showed a limitation that small mixed pixels used may provide insufficient information to separate the classes. Small mixed pixels of the class border region provide cost-effective training sets, but its use with other pixels must be considered in use of high-resolution satellite imagery or relatively complex land cover situations.

Object Detection from High Resolution Satellite Image by Using Genetic Algorithms

  • Kim Kwang-Eun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.120-122
    • /
    • 2005
  • With the commercial availability of very high resolution satellite imagery, the concealment of national confidential targets such as military facilities became one of the most bothering task to the image distributors. This task has been carried out by handwork masking of the target objects. Therefore, the quality of the concealment was fully depends on the ability and skill of a worker. In this study, a spectral clustering based technique for the seamless concealment of confidential targets in high resolution imagery was developed. The applicability test shows that the proposed technique can be used as a practical procedure for those who need to hide some information in image before public distribution

  • PDF